A COMPUTATIONAL MODELLING APPROACH TO EXPLORE THE ANTI-MICROBIAL PRO-DRUG DELIVERY SYSTEM

James T. Murphy, Ray Walshe, Marc Devocelle

Abstract

This article documents simulations using an agent-based modelling approach to analyse the system dynamics of the b-lactamase-dependent therapeutic activation pro-drug delivery system, a novel approach for achieving selective release of anti-microbial drugs for treating antibiotic-resistant bacteria. It is thought that this strategy could be a promising approach for treating b-lactamase over-expressing strains of bacteria that are resistant to traditional b-lactam antibiotics such as penicillin. Test simulations were carried out to investigate the prodrug system from a theoretical standpoint and assess the effects of key parameters such as half-life, diffusion rate and reaction kinetics on the system behaviour. It is important to obtain a thorough understanding of the complex interplay between the various components involved in the pro-drug delivery system to be able to interpret results from laboratory testing, and ultimately, from the clinical setting. The agent-based model described here represents an important stepping stone in connecting the theoretical and practical understanding of the system as a whole.

References

  1. Abraham, E. P. and Chain, E. (1940). An enzyme from bacteria able to destroy penicillin. Nature, 146:837.
  2. Bush, K., Macielag, M., and Weidner-Wells, M. (2004). Taking inventory: antibacterial agents currently at or beyond phase 1. Current opinion in microbiology, 7(5):466-476.
  3. Fisher, J. F., Meroueh, S. O., and Mobashery, S. (2005). Bacterial resistance to beta-lactam antibiotics: compelling opportunism, compelling opportunity. Chemical reviews, 105(2):395-424.
  4. Ginovart, M., Lopez, D., and Valls, J. (2002). Indisim, an individual-based discrete simulation model to study bacterial cultures. Journal of theoretical biology, 214(2):305-319.
  5. Jennings, N. R., Sycara, K., and Wooldridge, M. J. (1998). A roadmap of agent research and development. Autonomous Agents and Multi-Agent Systems, 1(1):7- 38.
  6. Levy, S. B. and Marshall, B. (2004). Antibacterial resistance worldwide: causes, challenges and responses. Nature medicine, 10(12 Suppl):S122-9.
  7. Li, Q., Lee, J. Y., Castillo, R., Hixon, M. S., Pujol, C., Doppalapudi, V. R., Shepard, H. M., Wahl, G. M., Lobl, T. J., and Chan, M. F. (2002). Nb2001, a novel antibacterial agent with broad-spectrum activity and enhanced potency against beta-lactamase-producing strains. Antimicrobial Agents and Chemotherapy, 46(5):1262-1268.
  8. Murphy, J. T., Walshe, R., and Devocelle, M. (2007). Agent-based model of methicillin-resistant staphylococcus aureus and antibiotics in batch culture. In Proceedings of 21st Annual European Simulation and Modelling Conference, pages 409-414. Eurosis-ETI.
  9. Murphy, J. T., Walshe, R., and Devocelle, M. (2008). A computational model of antibiotic-resistance mechanisms in methicillin-resistant staphylococcus aureus (mrsa). Journal of theoretical biology, 254(2):284- 293.
  10. Murphy, J. T., Walshe, R., and Devocelle, M. (2009). Modelling the population dynamics of antibiotic-resistant bacteria: An agent-based approach. International Journal of Modern Physics C, 20(3):435-457.
  11. Murphy, J. T., Walshe, R., and Devocelle, M. (2010). A theoretical analysis of the pro-drug delivery system for treating antibiotic-resistant bacteria. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 99.
  12. Neu, H. C. (1992). The crisis in antibiotic resistance. Science, 257(5073):1064-1073.
  13. Rautio, J., Kumpulainen, H., Heimbach, T., Oliyai, R., Oh, D., Jarvinen, T., and Savolainen, J. (2008). Prodrugs: design and clinical applications. Nature reviews.Drug discovery, 7(3):255-270.
  14. Slater-Radosti, C., Aller, G. V., Greenwood, R., Nicholas, R., Keller, P. M., Jr, W. E. D., Fan, F., Payne, D. J., and Jaworski, D. D. (2001). Biochemical and genetic characterization of the action of triclosan on staphylococcus aureus. The Journal of antimicrobial chemotherapy, 48(1):1-6.
  15. Smyth, T. P., O'Donnell, M. E., O'Connor, M. J., and StLedger, J. O. (2000). beta-lactamasedependent prodrugsrecent developments. Tetrahedron, 56(31):5699-5707.
  16. Stone, G. W., Zhang, Q., Castillo, R., Doppalapudi, V. R., Bueno, A. R., Lee, J. Y., Li, Q., Sergeeva, M., Khambatta, G., and Georgopapadakou, N. H. (2004). Mechanism of action of nb2001 and nb2030, novel antibacterial agents activated by beta-lactamases. Antimicrobial Agents and Chemotherapy, 48(2):477-483.
  17. Zygmunt, D. J., Stratton, C. W., and Kernodle, D. S. (1992). Characterization of four beta-lactamases produced by staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 36(2):440-445.
Download


Paper Citation


in Harvard Style

T. Murphy J., Walshe R. and Devocelle M. (2011). A COMPUTATIONAL MODELLING APPROACH TO EXPLORE THE ANTI-MICROBIAL PRO-DRUG DELIVERY SYSTEM . In Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2011) ISBN 978-989-8425-36-2, pages 301-308. DOI: 10.5220/0003154903010308


in Bibtex Style

@conference{bioinformatics11,
author={James T. Murphy and Ray Walshe and Marc Devocelle},
title={A COMPUTATIONAL MODELLING APPROACH TO EXPLORE THE ANTI-MICROBIAL PRO-DRUG DELIVERY SYSTEM},
booktitle={Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2011)},
year={2011},
pages={301-308},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003154903010308},
isbn={978-989-8425-36-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2011)
TI - A COMPUTATIONAL MODELLING APPROACH TO EXPLORE THE ANTI-MICROBIAL PRO-DRUG DELIVERY SYSTEM
SN - 978-989-8425-36-2
AU - T. Murphy J.
AU - Walshe R.
AU - Devocelle M.
PY - 2011
SP - 301
EP - 308
DO - 10.5220/0003154903010308