OPTIMIZATION OF A SOLID STATE FERMENTATION BASED ON RADIAL BASIS FUNCTION NEURAL NETWORK AND PARTICLE SWARM OPTIMIZATION ALGORITHM

Badia Dandach-Bouaoudat, Farouk Yalaoui, Lionel Amodeo, Françoise Entzmann

Abstract

Radial basis function neural network (RBF) and particle swarm optimization (PSO) are used to model and optimize a solid state fermentation (SSF) for production of the enzyme. Experimental data reported in the literature are used to investigate this approach. The response surface methodology (RSM) is applied to optimize PSO parameters. Using this procedure, two artificial intelligence techniques (RBF-PSO) have been effectively integrated to create a powerful tool for bioprocess modelling and optimization. This paper describes the applications of this approach for the first time in the solid state fermentation optimization.

References

  1. Carlisle, A. and Dozier, G. (2001). An off-the-shelf PSO. In Proceedings of the workshop on particle swarm optimization. Indianapolis, IN: Purdue School of Engineering and Technology, IUPUI.
  2. Ceylan, H., Kubilay, S., Aktas, N., and Sahiner, N. (2008). An approach for prediction of optimum reaction conditions for laccase-catalyzed bio-transformation of 1- naphthol by response surface methodology (RSM). Bioresource technology.
  3. Chang, S., Shaw, J., Yang, K., Chang, S., and Shieh, C. (2008). Studies of optimum conditions for covalent immobilization of Candida rugosa lipase on poly ([gamma]-glutamic acid) by RSM. Bioresource technology.
  4. Dandach-Bouaoudat, B., Yalaoui, F., Amodeo, L., and Entzmann, F. (2010). Optimization of a solid state fermentation using Genetic Algorithm. In 5th International Symposium on Hydrocarbons and ChemistrySidi Fredj, Algiers.
  5. Dutta, J., Dutta, P., and Banerjee, R. (2004). Optimization of culture parameters for extracellular protease production from a newly isolated Pseudomonas sp. using response surface and artificial neural network models. Process biochemistry.
  6. Hassan, R., Cohanim, B., De Weck, O., and Venter, G. (2005). A comparison of particle swarm optimization and the genetic algorithm. In Proceedings of the 1st AIAA Multidisciplinary Design Optimization Specialist Conference.
  7. Hu, X., Eberhart, R., and Shi, Y. (2003). Engineering optimization with particle swarm. In Proceedings of the 2003 IEEE Swarm Intelligence Symposium, 2003. SIS'03.
  8. Kammoun, R., Naili, B., and Bejar, S. (2008). Application of a statistical design to the optimization of parameters and culture medium for [alpha]-amylase production by Aspergillus oryzae CBS 819.72 grown on gruel (wheat grinding by-product). Bioresource technology.
  9. Kennedy, J. (1998). The behavior of particles. In Evolutionary Programming VII. Springer.
  10. Kennedy, J., Eberhart, R., et al. (1995). Particle swarm optimization. In Proceedings of IEEE international conference on neural networks. Piscataway, NJ: IEEE.
  11. Kennedy, M. and Krouse, D. (1999). Strategies for improving fermentation medium performance: a review. Journal of Industrial Microbiology and Biotechnology.
  12. Kunamneni, A. and Singh, S. (2005). Response surface optimization of enzymatic hydrolysis of maize starch for higher glucose production. Biochemical Engineering Journal.
  13. Shi, Y. and Eberhart, R. (1998). Parameter selection in particle swarm optimization. In Evolutionary Programming VII. Springer.
  14. Ustok, F., Tari, C., and Gogus, N. (2007). Solid-state production of polygalacturonase by Aspergillus sojae ATCC 20235. Journal of biotechnology.
  15. Wilson, D., Irwin, G., and Lightbody, G. (1999). RBF principal manifolds for process monitoring. IEEE Transactions on Neural Networks.
Download


Paper Citation


in Harvard Style

Dandach-Bouaoudat B., Yalaoui F., Amodeo L. and Entzmann F. (2011). OPTIMIZATION OF A SOLID STATE FERMENTATION BASED ON RADIAL BASIS FUNCTION NEURAL NETWORK AND PARTICLE SWARM OPTIMIZATION ALGORITHM . In Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2011) ISBN 978-989-8425-36-2, pages 287-292. DOI: 10.5220/0003136202870292


in Bibtex Style

@conference{bioinformatics11,
author={Badia Dandach-Bouaoudat and Farouk Yalaoui and Lionel Amodeo and Françoise Entzmann},
title={OPTIMIZATION OF A SOLID STATE FERMENTATION BASED ON RADIAL BASIS FUNCTION NEURAL NETWORK AND PARTICLE SWARM OPTIMIZATION ALGORITHM},
booktitle={Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2011)},
year={2011},
pages={287-292},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003136202870292},
isbn={978-989-8425-36-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2011)
TI - OPTIMIZATION OF A SOLID STATE FERMENTATION BASED ON RADIAL BASIS FUNCTION NEURAL NETWORK AND PARTICLE SWARM OPTIMIZATION ALGORITHM
SN - 978-989-8425-36-2
AU - Dandach-Bouaoudat B.
AU - Yalaoui F.
AU - Amodeo L.
AU - Entzmann F.
PY - 2011
SP - 287
EP - 292
DO - 10.5220/0003136202870292