P. Carvalho, R. P. Paiva, D. Kumar, J. Ramos, S. Santos, J. Henriques


Cardiac auscultation is a traditional, yet highly sensitive and specific diagnosis technique for cardiovascular diseases. We present a Matlab framework for cardiac signals processing and analysis, which includes a new toolbox specifically designed for the main processing tasks related to heart sound analysis. Existing frameworks for acoustic cardiac signal analysis usually limit themselves to noise contamination detection, S1 and S2 segmentation and murmur diagnosis. Besides these operations, the proposed framework includes algorithms developed for segmentation of the main heart sound components capable of handling situations with high-grade murmur, S3 detection and identification, S2 split identification as well as systolic time intervals (STI) measurement using heart sound. Methods for cardiac function parameter extraction based on STI are also included. Most of the algorithms outlined in the paper have been extensively evaluated using data collected from patients with several types of cardiovascular diseases under real-life conditions. The achieved results suggest that the algorithms developed for the framework exhibit performances that are comparable and, in most cases, surpass existing state of the art methods.


  1. Abarbanel H., 1996, Analysis of observed chaotic data, Springer- Verlag New York, Inc., 87-90.
  2. Abbas A, Bassam R, 2009, Phonocardiography signal processing, synthesis lectures on biomedical Engineering, Morgan and Claypool Publishers.
  3. Ahlstrom C., Hult P., Rask P., Karlsson J., Nylander E., Dahlstro U., Ask P., 2003, Feature extraction for systolic heart murmur classification. Annals of Biomed. Engg., 34(11):1666-1677.
  4. Allender S., Scarborough P., Petov P., Rayner M., Leal J., Luengo-Fernandez R., Gray A., 2008, European Cardiovascular Disease Statistics 2008, European Heart Network.
  5. Carvalho P., Paiva R., Couceiro R., Henriques J., Quintal I., Muehlsteff J., Aubert X., Antunes M., 2009, Assessing Systolic Time-Intervals from Heart Sound: a Feasibility Study, IEEE-EMBS.
  6. Carvalho P., Paiva R., Henriques J., Antunes M., Quintal I., Muehlsteff J., 2011, Robust Characteristic Points for ICG: Definition and Comparative Analysis, Biostec: Biosignals. (submitted)
  7. Carvalho P., Paiva R., Henriques J., Quintal I., Muehlsteff J., Aubert X., Antunes M., 2010, Comparison of Systolic Time Interval Measurement Modalities for Portable Devices, IEEE-EMBS.
  8. Chan G., Middleton P., Celler B., Wang L., Lovell N., 2007, Automatic detection of left ventricular ejection time from a finger photoplethysmographic pulse oximetry waveform: comparison with Doppler aortic measurement, Physiol. Meas. 28:439-452
  9. Durand L. G. and Pibarot P., 1995 Digital signal processing of the phonocardiogram: review of the most recent advancements, Crit. Rev. Biomedical Engineering, 23:163-219
  10. Habetha J., 2006, The MyHeart Project - Fighting Cardiovascular Diseases by Prevention and Early Diagnosis, IEEE-EMBS.
  11. Hadjileontiadis L., Rekanos I., 2003, Detection of explosive lung bowel sounds by means of fractal dimension, IEEE Signal Proc. Letters, 10(10):311- 314.
  12. Henriques J., Carvalho P., Harris M., Antunes M., Couceiro R., Brito M., Schmidt R., 2008, Assessment of Arrhythmias for Heart Failure Management, phealth2008 - Int. Workshop on Wearable Micro and Nanosystems for Personalised Health.
  13. Javed F., Venkatachalam P., Fadzil A., 2006, A Signal Processing Module for the Analysis of Heart Sounds and Heart Murmurs, Journal of Physics: Conference Series; International MEMS Conference, 34:1098- 1105.
  14. Kumar D., Carvalho P., Antunes M., Henriques, J., Eugénio L., Schmidt R., Habetha, J., 2006a, Detection of S1 and S2 Heart Sounds by High Frequency Signatures, IEEE-EMBS.
  15. Kumar D., Carvalho P., Antunes M., Henriques, J., Eugénio L., Schmidt R., Habetha, J., 2006, Wavelet Transform and Simplicity based Heart Murmur Segmentation, Computers in Cardiology, 33:173-176.
  16. Kumar D., Carvalho P., Couceiro R., Antunes M., Paiva R., Henriques J., 2010, Heart Murmur Classification using Complexity Signatures, Int. Conf on Pattern Recognition.
  17. Lam M., Lee T., Boey P., Ng W., Hey H., Ho K., Cheong P., 2005, Factors influencing cardiac auscultation proficiency in physician trainees, Singapore Med J; 46(1):11.
  18. Mertens H., Mannbach H., Trieb M., Gleichmann U., 1981, Influence of Heart Rate on Systolic Time Intervals: Effects of Atrial Pacing versus Dynamic Exercise, Clin. Cardiol., 4: 22-27.
  19. Oh J., Tajik J., 2003, The return of cardiac time intervals. The Phonix is rising., J. of the Am. Col. of Cardiology, 42(8):1471-1474.
  20. Olmez T., Dokur Z., 2003, Classification of heart sounds using ans artifical neural network, Pattern Recognition Letters, 617-629.
  21. Paiva P., Carvalho P., Aubert X., Muehlsteff J., Henriques J., Antunes M., 2009, Assessing PEP and LVET from Heart Sounds: Algorithms and Evaluation, IEEEEMBS.
  22. Pease A., 2001, If the heart could speak, Pictures of the Future, 60-61.
  23. Popov B. Sierra G. Durand L. Xu J., Pibarot P., Agarwal R., Lanzo V., 2004, Automated extraction of aortic and pulmonary components of the second heart sound for the estimation of pulmonary artery pressure, IEEEEMBS.
  24. Rajan S., Doraiswami R., Stevenson M., Watrous R., 1998, Wavelet based bank of correlators approach for phonocardiogram signal classification, IEEE-SP Int. Symposium on Time-Frequency and Time-Scale Analysis , 77 - 80.
  25. Ramos J., P. Carvalho, R. Paiva, L. Vale, J. Henriques, 2011, Intelligent Phonocardiogram Analysis And Representation Tool, Biostec: HealthInf. (submitted)
  26. Rietzschel E., Boeykens E., Buyzere M. Duprez D. Clement D., 2001, A comparision between systolic and diastolic pulse contour analysis in the evaluation of arterial stiffness, Hypertension, 37:e15-e22.
  27. Syed Z., Leeds D., Curtis D., Nesta F., Levine R., Guttag J., 2007, A Framework for the Analysis of Acoustical Cardiac Signals, IEEE Trans. On Biomedical Eng., 54(4): 651-662.
  28. Tavel M. E., 1967 Clinical Phonocardiography and External Pulse Recording (Year Book Medical Publishers, Inc.)
  29. Wang X,, Sun H,, Water J,, 1995, An advanced signal processing technique for impedance cardiography, IEEE Trans. On BioMed. Eng., 42(2) 224-30.
  30. Warrington S., Weerasuriya K., Burgess C., 1988, Correction of systolic time intervals for heart rate: A comparison of individual with population derived regression equations, Br. J. Clin. Pharmacol., 26(2):155-165.
  31. Weissler A., Harris W., Schoenfeld C., 1968, Systolic Time Intervals in Heart Failure in Man, Circulation, 37; 149-159.
  32. WHO 2005, Preventing Chronic Disease: a Vital Investment, World Health Organization.

Paper Citation

in Harvard Style

Carvalho P., P. Paiva R., Kumar D., Ramos J., Santos S. and Henriques J. (2011). A FRAMEWORK FOR ACOUSTIC CARDIAC SIGNAL ANALYSIS . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2011) ISBN 978-989-8425-35-5, pages 151-160. DOI: 10.5220/0003134701510160

in Bibtex Style

author={P. Carvalho and R. P. Paiva and D. Kumar and J. Ramos and S. Santos and J. Henriques},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2011)},

in EndNote Style

JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2011)
SN - 978-989-8425-35-5
AU - Carvalho P.
AU - P. Paiva R.
AU - Kumar D.
AU - Ramos J.
AU - Santos S.
AU - Henriques J.
PY - 2011
SP - 151
EP - 160
DO - 10.5220/0003134701510160