EXTRACTION OF FUNCTION FEATURES FOR AN AUTOMATIC CONFIGURATION OF PARTICLE SWARM OPTIMIZATION

Tjorben Bogon, Georgios Poursanidis, Andreas D. Lattner, Ingo J. Timm

Abstract

In this paper we introduce a new approach for automatic parameter configuration of Particle Swarm Optimization (PSO) by using features of objective function evaluations for classification. This classification utilizes a decision tree that is trained by using 32 function features. To classify different functions we compute features of the function from observed PSO behavior. These features are an adequate description to compare different objective functions. This approach leads to a trained classifier which gets as input a function and returns a parameter set. Using this parameter set leads to an equal or better optimization process compared to the standard parameter settings of Particle Swarm Optimization on selected test functions.

References

  1. Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999). Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, USA, 1 edition.
  2. Bratton, D. and Kennedy, J. (2007). Defining a standard for particle swarm optimization. Swarm Intelligence Symposium, pages 120-127.
  3. Clerc, M. and Kennedy, J. (2002). The particle swarm - explosion, stability, and convergence in a multidimensional complex space. Evolutionary Computation, IEEE Transactions on, 6(1):58-73.
  4. Eberhart, R. and Kennedy, J. (1995). A new optimizer using part swarm theory. Proceedings of the Sixth International Symposium on Micro Maschine and Human Science, pages 39-43.
  5. Hoos, H. and St├╝tzle, T. (2004). Stochastic Local Search: Foundations & Applications. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
  6. Hutter, F., Hoos, H. H., and Stutzle, T. (2007). Automatic algorithm configuration based on local search. In Proceedings of the Twenty-Second Conference on Artifical Intelligence, (AAAI 7807), pages 1152-1157.
  7. Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. Proceedings of the 1995 IEEE International Conference on Neural Network (Perth, Australia), pages 1942-1948.
  8. Leyton-Brown, K., Nudelman, E., and Shoham, Y. (2002). Learning the empirical hardness of optimization problems: The case of combinatorial auctions. Principles and Practice of Constraint Programming (CP 7802), pages 91-100.
  9. Pant, M., Thangaraj, R., and Singh, V. P. (2007). Particle swarm optimization using gaussian inertia weight. In International Conference on Conference on Computational Intelligence and Multimedia Applications, volume 1, pages 97-102.
  10. Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. San Mateo, CA. Morgan Kaufmann.
  11. Shi, Y. and Eberhart, R. C. (1998). Parameter selection in particle swarm optimization. In Proceedings of the 7th International Conference on Evolutionary Programming VII, (EP 7898), pages 591-600, London, UK. Springer-Verlag.
  12. Talbi, E.-G. (2009). Metaheuristics: From design to implementation. Wiley, Hoboken, NJ.
  13. Trelea, I. C. (2003). The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf. Process. Lett., 85(6):317-325.
  14. van den Bergh, F. and Engelbrecht, A. (2002). A new locally convergent particle swarm optimiser. Systems, Man and Cybernetics, 2002 IEEE International Conference on, 3:6 pp.
  15. Witten, I. H. and Frank, E. (2005). Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann, San Francisco, 2nd edition.
  16. Wolpert, D. and Macready, W. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1):67-82.
Download


Paper Citation


in Harvard Style

Bogon T., Poursanidis G., D. Lattner A. and J. Timm I. (2011). EXTRACTION OF FUNCTION FEATURES FOR AN AUTOMATIC CONFIGURATION OF PARTICLE SWARM OPTIMIZATION . In Proceedings of the 3rd International Conference on Agents and Artificial Intelligence - Volume 1: ICAART, ISBN 978-989-8425-40-9, pages 51-60. DOI: 10.5220/0003134500510060


in Bibtex Style

@conference{icaart11,
author={Tjorben Bogon and Georgios Poursanidis and Andreas D. Lattner and Ingo J. Timm},
title={EXTRACTION OF FUNCTION FEATURES FOR AN AUTOMATIC CONFIGURATION OF PARTICLE SWARM OPTIMIZATION},
booktitle={Proceedings of the 3rd International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,},
year={2011},
pages={51-60},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003134500510060},
isbn={978-989-8425-40-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,
TI - EXTRACTION OF FUNCTION FEATURES FOR AN AUTOMATIC CONFIGURATION OF PARTICLE SWARM OPTIMIZATION
SN - 978-989-8425-40-9
AU - Bogon T.
AU - Poursanidis G.
AU - D. Lattner A.
AU - J. Timm I.
PY - 2011
SP - 51
EP - 60
DO - 10.5220/0003134500510060