ACCELEROMETER BASED GAIT ANALYSIS - Multi Variate Assessment of Fall Risk with FD-NEAT

Bart Jansen, Maxine Tan, Ivan Bautmans, Bart Van Keymolen, Tony Mets, Rudi Deklerck

Abstract

This paper describes an accelerometer based gait analysis system for the assessment of fall risk. The assessment is based on 22 different features calculated from the signal. The different features are combined using machine learning algorithms in order to decide whether the subject has an increased fall risk. Results from Naive Bayes, Neural Networks, Locally Weighted Learning, Support Vector Machines and C4.5 are reported and compared. It is argued that the neural networks provide low accuracy results because of the high dimensionality of the feature space compared to the available data. It is shown that FD-NEAT (a method from neuro evolution which simultaneously learns the network topology, the network weights and the relevant features) outperforms the other methods in the given classification task. The system is evaluated on a database consisting of 40 elderly with known fall risk and 40 healthy elderly controls.

References

  1. Atkeson C., Moore A., and Schaal S., 1996. "Locally weighted learning" AI Reviews.
  2. Duda, R. O., Hart, P. E., & Stork, D. G. (2000). Pattern Classification. Wiley-Interscience.
  3. Giansanti, D., Maccioni, G., Cesarino, S., Benvenuti, F., & Maccellari, V. (2008). Assessment of fall-risk by means of a neural network based on parameters assessed by a wearable device during posturography. Medical Engineering and Physics, 30, 367-372.
  4. Hausdorff, J. M., Schaafsma, J. D., Balash, Y., Bartels, a. L., Gurevich, T., Giladi, N., et al. (2003). Impaired regulation of stride variability in Parkinson's disease subjects with freezing of gait. Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale, 149(2), 187-94.
  5. Hausdorff J. M., 2005. Gait variability: methods, modeling and meaning. Journal of NeuroEngineering and Rehabilitation. 9:1-9.
  6. Marschollek, M., Nemitz, G., Gietzelt, M., Wolf, K. H., Meyer Zu Schwabedissen, H., Haux, R., et al., 2009. Predicting in-patient falls in a geriatric clinic: a clinical study combining assessment data and simple sensory gait measurements. Zeitschrift für Gerontologie und Geriatrie : Organ der Deutschen Gesellschaft für Gerontologie und Geriatrie, 42(4), 317-21.
  7. Marschollek M., Wolf K., Plischke M., Haux R., 2006. Classification of activities of daily life from long-term realistic multi-sensor data. In: Proceedings of IEEE Health Pervasive Systems HPS06.
  8. Moe-Nilssen, R. (1998). Test-retest reliability of trunk accelerometry during standing and walking *1, *2. Archives of Physical Medicine and Rehabilitation, 79(11), 1377-1385.
  9. Moe-Nilssen R., Helbostad J. L., 2004. Estimation of gait cycle characteristics by trunk accelerometry. Journal of Biomechanics. 37(1):121-126.
  10. Moe-Nilssen, R., & Helbostad, J. L. (2005). Interstride trunk acceleration variability but not step width variability can differentiate between fit and frail older adults. Gait & posture, 21(2), 164-70.
  11. Narayanan, M. R., Redmond, S. J., Scalzi, M. E., Lord, S. R., Celler, B. G., Lovell Ast, N. H., et al., 2010. Longitudinal falls-risk estimation using triaxial accelerometry. IEEE transactions on bio-medical engineering, 57(3), 534-41.
  12. Oshima Y., Kawaguchi K., Tanaka S., et al., 2010. Classifying household and locomotive activities using a triaxial accelerometer. Gait & posture. 31(3):370-4.
  13. Platt J., 1998. "Fast Training of Support Vector Machines using Sequential Minimal Optimization". Advances in Kernel Methods-Support Vector Learning, B. Schoelkopf, C. Burges, and A. Smola, eds., MIT Press.
  14. Quinlan R., 1993. "C4.5: Programs for Machine Learning", Morgan Kaufmann Publishers, San Mateo.
  15. Stanley K. O., Miikkulainen R., 2002. Evolving neural networks through augmenting topologies. Evol Comput 10:99-127.
  16. Swanenburg, J., de Bruin, E. D., Uebelhart, D., & Mulder, T. (2010). Falls prediction in elderly people: a 1-year prospective study. Gait & posture, 31(3), 317-21.
  17. Tan M., Hartley M., Bister M., Deklerck R., 2009. Automated feature selection in neuroevolution. Evolutionary Intelligence. 1(4):271-292.
  18. Whiteson S., Stanley K. O., Miikkulainen R., 2004. Automatic feature selection in neuroevolution. In: Proceedings of the genetic and evolutionary computation conference (GECCO), Seattle, Washington, USA.
  19. Zijlstra W., 2004. Assessment of spatio-temporal parameters during unconstrained walking. European journal of applied physiology. 92(1-2):39-44.
Download


Paper Citation


in Harvard Style

Jansen B., Tan M., Bautmans I., Van Keymolen B., Mets T. and Deklerck R. (2011). ACCELEROMETER BASED GAIT ANALYSIS - Multi Variate Assessment of Fall Risk with FD-NEAT . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2011) ISBN 978-989-8425-35-5, pages 138-143. DOI: 10.5220/0003132701380143


in Bibtex Style

@conference{biosignals11,
author={Bart Jansen and Maxine Tan and Ivan Bautmans and Bart Van Keymolen and Tony Mets and Rudi Deklerck},
title={ACCELEROMETER BASED GAIT ANALYSIS - Multi Variate Assessment of Fall Risk with FD-NEAT},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2011)},
year={2011},
pages={138-143},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003132701380143},
isbn={978-989-8425-35-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2011)
TI - ACCELEROMETER BASED GAIT ANALYSIS - Multi Variate Assessment of Fall Risk with FD-NEAT
SN - 978-989-8425-35-5
AU - Jansen B.
AU - Tan M.
AU - Bautmans I.
AU - Van Keymolen B.
AU - Mets T.
AU - Deklerck R.
PY - 2011
SP - 138
EP - 143
DO - 10.5220/0003132701380143