A COMPUTATIONAL MODEL FOR CONSCIOUS VISUAL PERCEPTION AND FIGURE/GROUND SEPARATION

Marc Ebner, Stuart Hameroff

Abstract

The human brain is able to perform a number feats that researchers have not been able to replicate in artificial systems. Unsolved questions include: Why are we conscious and how do we process visual information from the input stimulus right down to the individual action. We have created a computational model of visual information processing. A network of spiking neurons, a single layer, is simulated. This layer processes visual information from a virtual retina. In contrast to the standard integrate and fire behavior of biological neurons, we focus on lateral connections between neurons of the same layer. We assume that neurons performing the same function are laterally connected through gap junctions. These lateral connections allow the neurons responding to the same stimulus to synchronize their firing behavior. The lateral connections also enable the neurons to perform figure/ground separation. Even though we describe our model in the context of visual information processing, it is clear that the methods described, can be applied to other kinds of information, e.g. auditory.

References

  1. Carroll, T. L. and Pecora, L. M. (1991). Synchronizing chaotic circuits. IEEE Trans. on Circuits and Systems, 38(4):453-456.
  2. Chaumette, F. and Hutchinson, S. (2006). Visual servo control part I: Basic approaches. IEEE Robotics & Automation Magazine, 13(4):82-90.
  3. Chaumette, F. and Hutchinson, S. (2007). Visual servo control part II: Advanced approaches. IEEE Robotics & Automation Magazine, 14(1):109-118.
  4. Crick, F. and Koch, C. (1995). Are we aware of neural activity in primary visual cortex? Nature, 375:121- 123.
  5. Dartnall, H. J. A., Bowmaker, J. K., and Mollon, J. D. (1983). Human visual pigments: microspectrophotometric results from the eyes of seven persons. Proc. R. Soc. Lond. B, 220:115-130.
  6. Eckhorn, R., Reitboeck, H. J., Arndt, M., and Dicke, P. (1990). Feature linking via synchronization among distributed assemblies: Simulations of results from cat visual cortex. Neural Comput., 2:293-307.
  7. Gerstner, W. and Kistler, W. (2002). Spiking Neuron Models. Cambridge University Press, Cambridge, UK.
  8. Gray, C. M. and Singer, W. (1989). Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. PNAS, 86:1698-1702.
  9. Hameroff, S. (2010). The “conscious pilot” - dendritic synchrony moves through the brain to mediate consciousness. Journal of Biological Physics, 36:71-93.
  10. Herault, J. (1996). A model of colour processing in the retina of vertebrates: From photoreceptors to colour opposition and colour constancy phenomena. Neurocomputing, 12:113-129.
  11. Izhikevich, E. M. and Edelman, G. M. (2008). Large-scale model of mammalian thalamocortical systems. PNAS, 105(9):3593-3598.
  12. König, P. and Schillen, T. B. (1991). Stimulus-dependent assembly formation of oscillatory responses: I. synchronization. Neural Comput., 3:155-166.
  13. Kouider, S. (2009). Neurobiological theories of consciousness. In Banks, W. P., editor, Encyclopedia of Consciousness, pages 87-100. Elsevier.
  14. Lamme, V. A. F. (2006). Towards a true neural stance on consciousness. Trends in Cognitive Sciences, 10(11):494-501.
  15. Mountcastle, V. B. (1997). The columnar organization of the neocortex. Brain, 120:701-722.
  16. Pecora, L. M. and Carroll, T. L. (1990). Synchronization in chaotic systems. Phys. Rev. Lett., 64(8):821-824.
  17. Poynton, C. (2003). Digital Video and HDTV. Algorithms and Interfaces. Morgan Kaufmann Publishers.
  18. Ribary, U., Ioannides, A. A., Singh, K. D., Hasson, R., Bolton, J. P. R., Lado, F., Mogilner, A., and Llinás, R. (1991). Magnetic field tomography of coherent thalamocortical 40-hz oscillations. PNAS, 88:11037- 11041.
  19. Schillen, T. B. and König, P. (1991). Stimulus-dependent assembly formation of oscillatory responses: II. desynchronization. Neural Comput., 3:167-178.
  20. Singer, W. (1999). Neuronal synchrony: A versatile code for the definition of relations? Neuron, 24:49-65.
  21. Terman, D. and Wang, D. (1995). Global competition and local cooperation in a network of neural oscillators. Physica D, 81:148-176.
  22. Thivierge, J.-P. and Cisek, P. (2008). Nonperiodic synchronization in heterogeneous networks of spiking neurons. The Journal of Neuroscience, 28(32):7968- 7978.
  23. Tononi, G. and Edelman, G. M. (1998). Consciousness and complexity. Science, 282:1846-1851.
  24. Tovée, M. J. (1996). An introduction to the visual system. Cambridge University Press, Cambridge.
  25. Traub, R. D., Kopell, N., Bibbig, A., Buhl, E. H., LeBeau, F. E. N., and Whittington, M. A. (2001). Gap junctions between interneuron dendrites can enhance synchrony of gamma oscillations in distributed networks. The Journal of Neuroscience, 21(23):9478-9486.
  26. Veruki, M. L. and Hartveit, E. (2002). All (rod) amacrine cells form a network of electrically coupled interneurons in the mammalian retina. Neuron, 33:935-946.
  27. Volos, C. K., Kyprianidis, I. M., and Stouboulos, I. N. (2008). Experimental synchronization of two resistively coupled Duffing-type circuits. Nonlinear Phenomena in Complex Systems, 11(2):187-192.
  28. Wang, D. (1995). Emergent synchrony in locally coupled neural oscillators. IEEE Trans. on Neural Networks, 6(4):941-948.
  29. Wilson, H. R. and Cowan, J. D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal, 12:1-24.
  30. Zeki, S. (1993). A Vision of the Brain. Blackwell Science, Oxford.
  31. Zeki, S. (2007). A theory of micro-consciousness. In Velmans, M. and Schneider, S., editors, The Blackwell companion to consciousness, pages 580-588, Malden, MA. Blackwell Publishing.
  32. Zeki, S. M. (1978). Review article: Functional specialisation in the visual cortex of the rhesus monkey. Nature, 274:423-428.
  33. Zhao, L. and Breve, F. A. (2008). Chaotic synchronization in 2D lattice for scene segmentation. Neurocomputing, 71:2761-2771.
Download


Paper Citation


in Harvard Style

Ebner M. and Hameroff S. (2011). A COMPUTATIONAL MODEL FOR CONSCIOUS VISUAL PERCEPTION AND FIGURE/GROUND SEPARATION . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2011) ISBN 978-989-8425-35-5, pages 112-118. DOI: 10.5220/0003123201120118


in Bibtex Style

@conference{biosignals11,
author={Marc Ebner and Stuart Hameroff},
title={A COMPUTATIONAL MODEL FOR CONSCIOUS VISUAL PERCEPTION AND FIGURE/GROUND SEPARATION},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2011)},
year={2011},
pages={112-118},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003123201120118},
isbn={978-989-8425-35-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2011)
TI - A COMPUTATIONAL MODEL FOR CONSCIOUS VISUAL PERCEPTION AND FIGURE/GROUND SEPARATION
SN - 978-989-8425-35-5
AU - Ebner M.
AU - Hameroff S.
PY - 2011
SP - 112
EP - 118
DO - 10.5220/0003123201120118