FEASIBILITY OF SUBSPACE IDENTIFICATION FOR BIPEDS - An Innovative Approach for Kino-Dynamic Systems

Muhammad Saad Saleem, Ibrahim A. Sultan

2007

Abstract

Different approaches have been briefly overviewed which have been used in stability of biped robots. Current implementations either mimic human behavior or use heuristic control. This paper suggests the use of model-free crisp control in operational space configuration for better control and understanding of kino-dynamic systems and biped robots.

References

  1. Alexander, R. M. (1996). Optima for Animals. Princeton University Press, revised edition.
  2. Arimoto, S. (1995). Fundamental problems of robot control: Parti, innovations in the realm of robot servo-loops. Robotica, 13:19-27.
  3. Favoreel, W., Moor, B. D., Gevers, M., and Overschee, P. V. (1998). Model-free subspace-based LQG-design. Technical report, Katholieke Universiteit Leuven.
  4. Favoreel, W., Moor, B. D., Gevers, M., and Overschee, P. V. (1999a). Closed loop model-free subspace-based LQGdesign. In Proceedings of the IEEE Mediterranean Conference on Control and Automation, Haifa, Israel.
  5. Favoreel, W., Moor, B. D., and Overschee, P. V. (1999b). Model-free subspace-based LQG-design. In Proceedings of the American Control Conference, pages 3372-3376.
  6. Golub, G. H. and Loan, C. F. V. (1996). Matrix Computations. The Johns Hopkins University Press.
  7. Gupta, M. M., Rao, D. H., and Nikiforuk, P. N. (1993). Dynamic neural network based inverse kinematics transformation of two- and three-linked robots. In 12th World Congress, International Federation of Automatic Control, Sydney, Australia, pages 289-296.
  8. Hirai, K., Hirose, M., Haikawa, Y., and Takenaka, T. (1998). The development of honda humanoid robot. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages 1321-1326.
  9. Hsu, E., Pulli, K., and Popovic, J. (2005). Style translation for human motion. ACM Transactions on Graphics (TOG), 24(3):1082-1089.
  10. Jansson, M. and Wahlberg, B. (1996). A linear regression approach to state-space subspace system identification. Signal Processing, 52:103-129.
  11. Juang, J. N. (1994). Applied System Identification. PTR Prentice-Hall.
  12. Kajita, S., Yamaura, T., and Kobayashi, A. (1992). Dynamic walking control of a biped robot along a potential energy conserving orbit. IEEE Transactions on Robotics and Automation, 6(1):431-438.
  13. Kato, T., Takanishi, A., Jishikawa, H., and Kato, I. (1983). The realization of the quasi-dynamic walking by the biped walking machine. In Morecki, A., Bianchi, G., and Kedzior, K., editors, Fourth Symposium on Theory and Practice of Walking Robots, pages 341-351. Polish Scientific Publishers.
  14. Kelbley, R. J. (2006). Guidance and control of an unmanned surface vehicle. Master's thesis, Computer Engineering, University of California, Santa Cruz.
  15. Kelly, R. (1993). Comments on adaptive pd controller for robot manipulators. IEEE Trans. Robot. Automat., 9:117-119.
  16. Kelly, R. (1997). Pd control with desired gravity compensation of robotic manipulators: A review. Int. J. Robot. Res., 16(5):660-672.
  17. Khalil, W. and Dombre, E. (2004). Modeling, Identification and Control of Robots. Kogan Page Science.
  18. Kim, D., Kim, N.-H., Seo, S.-J., and Park, G.-T. (2004). Fuzzy Modeling of Zero Moment Point Trajectory for a Biped Walking Robot. Lecture Notes in Computer Science. Springer-Verlag GmbH, 3214 edition.
  19. Kim, J. O., Lee, B. R., Chung, C. H., Hwang, J., and Lee, W. (2003). The Inductive Inverse Kinematics Algorithm to Manipulate the Posture of an Articulated Body. Lecture Notes in Computer Science. Springer-Verlag GmbH, 2657 edition.
  20. Laib, A. (2000). Adaptive output regulation of robot manipulators under actuator constraints. IEEE Trans. Robot. Automat., 16:29-35.
  21. Larimore, W. E. (1990). Canonical variate analysis in identification, filtering and adaptive control. In IEEE Conference on Decision and Control, pages 596-604.
  22. Lim, H. and Takanishi, A. (2005). Compensatory motion control for a biped walking robot. Robotica, 23(01):1- 11.
  23. Lin, W., Qin, S. J., and Ljung, L. (2004). A framework for closed-loop subspace identification with innovation estimation. Technical Report 2004-07, Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA and Link öping University, SE-581 83 Linköping, Sweden.
  24. Ljung, L. (1999). System identification: theory for the user. Prentice-Hall, Upper Saddle River, NJ, USA.
  25. Lohar, F. A. (2000). H8 and µ-synthesis for full control of helicopter in hover. In 38th Aerospace Sciences Meeting and Exhibit, Reno, NV. American Institute of Aeronautics and Astronautics.
  26. Lope, J. d., Zarraonandia, T., González-Careaga, R., and Maravall, D. (2003). Solving the inverse kinematics in humanoid robots: A neural approach. Lecture Notes in Computer Science, 2687 / 2003:177-184.
  27. McGeer, T. (1990). Passive dynamic walking. The Internatinal Journal of Robotics Research, 9(2):62-82.
  28. McMahon, T. (1984). Mechanics of locomotion. The International Journal of Robotics Research, 3(2):4-28.
  29. Morari, M. and Lee, J. H. (1999). Model predictive control: Past, present and future. Computers and Chemical Engineering, 23:667-682.
  30. Norton, J. P. (1986). Introduction to Identification. Academic Press.
  31. Ogihara, N. and Yamazaki, N. (2001). Generation of human bipedal locomotion by a bio-mimetic neuro-musculoskeletal model. Biological Cybernetics, 84:1.
  32. Overschee, P. V. and Moor, B. D. (1994). N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems. Automatica, 30(1):75- 93.
  33. Overschee, P. V. and Moor, B. D. (1996). Subspace Identificiation for Linear Systems. Kluwer Academic Publishers.
  34. Paul B. Brugarolas, M. G. S. (2004). Learning about dynamical systems via unfalsification of hypotheses. International Journal of Robust and Nonlinear Control, 14(11):933-943.
  35. Pratt, J. and Pratt, G. (1998). Intuitive control of a planar bipedal walking robot. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).
  36. Pratt, J. and Pratt, G. (1999). Exploiting natural dynamics in the control of a 3D bipedal walking simulation. In Proceedings of the International Conference on Climbing and Walking Robots (CLAWAR).
  37. Pratt, J. E. (2000). Exploiting Inherent Robustness and Natural Dynamics in the Control of Bipedal Walking Robots. PhD thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology.
  38. Raibert, M. (1986). Legged Robots That Balance. The MIT Press.
  39. Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N., and Fujimura, K. (2002). The intelligent ASIMO: system overview and integration. In IEEE/RSJ International Conference on Intelligent Robots and System, volume 3, pages 2478-2483.
  40. Sapio, V. D. and Khatib, O. (2005). Operational space control of multibody systems with explicit holonomic constraints. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation.
  41. Schwind, W. J. (1998). Spring Loaded Inverted Pendulum Running: A Plant Model. PhD thesis, University of Michigan.
  42. Sciavicco, L. and Siciliano, B. (2000). Modelling and Control of Robot Manipulators. Springer, 2nd edition.
  43. Staib, W. E. and Staib, R. R. (1992). A neural network electrode positioning optimization system for the electric arc furnace. In International Joint Conference on Neural Networks, volume 111, pages 1-9.
  44. Taga, G. (1995). A model of the neuro-musculo-skeletal system for human locomotion. I. Emergence of basic gait. Biological Cybernetics, 73(2):97-111.
  45. Takegaki, M. and Arimoto, S. (1981). A new feedback method for dynamic control of manipulators. ASME J. Dyn. Syst., Meas., Control, 102:119-125.
  46. Tischler, M. B., Driscoll, J. T., Cauffman, M. G., and Freedman, C. J. (1994). Study of bearingless main rotor dynamics from frequency-response wind tunnel test data.
  47. Woodley, B., How, J., and Kosut, R. (2001a). Model free subspace based H8 control. In Proceedings of the 2001 American Control Conference, volume 4, pages 2712- 2717.
  48. Woodley, B., Kosut, R., and How, J. (1998). Uncertainty model unfalsification with simulation. In Proceedings of the 1998 American Control Conference, volume 5, pages 2754-2755.
  49. Woodley, B. R. (2001). Model free subspace based H8 control. PhD thesis, Department of Electrical Engineering, Stanford University.
  50. Woodley, B. R., How, J. P., and Kosut, R. L. (2001b). Subspace based direct adaptive H8 control. International Journal of Adaptive Control and Signal Processing, 15(5):535-561.
  51. Xie, M. (2003). Fundamentals of Robotics, volume 54 of Machine perception and artificial intelligence. World Scientific.
  52. Zhang, Y., Tian, H., Wang, Q., and Qiang, W. (2000). Servo control in joint space of biped robot using nonlinear H8 strategy. In Jiang, D. and Wang, A., editors, Proceedings of SPIE, International Conference on Sensors and Control Techniques (ICSC 2000), volume 4077, pages 386- 391.
  53. Note that even for very small prediction horizon i.e. i = 5, d
  54. n 0.015 a
  55. a 0.01 n
  56. -0.005 0 0 x 10 e
  57. te12 e
  58. lu10 a
Download


Paper Citation


in Harvard Style

Saad Saleem M. and A. Sultan I. (2007). FEASIBILITY OF SUBSPACE IDENTIFICATION FOR BIPEDS - An Innovative Approach for Kino-Dynamic Systems . In Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-972-8865-82-5, pages 133-140. DOI: 10.5220/0001646801330140


in Bibtex Style

@conference{icinco07,
author={Muhammad Saad Saleem and Ibrahim A. Sultan},
title={FEASIBILITY OF SUBSPACE IDENTIFICATION FOR BIPEDS - An Innovative Approach for Kino-Dynamic Systems},
booktitle={Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2007},
pages={133-140},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001646801330140},
isbn={978-972-8865-82-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - FEASIBILITY OF SUBSPACE IDENTIFICATION FOR BIPEDS - An Innovative Approach for Kino-Dynamic Systems
SN - 978-972-8865-82-5
AU - Saad Saleem M.
AU - A. Sultan I.
PY - 2007
SP - 133
EP - 140
DO - 10.5220/0001646801330140