SIMULATION METHODOLOGIES FOR SCIENTIFIC COMPUTING - Modern Application Design

Philipp Schwaha, Markus Schwaha, René Heinzl, Enzo Ungersboeck, Siegfried Selberherr

2007

Abstract

We discuss methodologies to obtain solutions to complex mathematical problems derived from physical models. We present an approach based on series expansion, using discretization and averaging, and a stochastic approach. Various forms based on the Boltzmann equation are used as model problems. Each of the methodologies comes with its own strengths and weaknesses, which are briefly outlined. We also provide short code snippets to demonstrate implementations of key parts, that make use of our generic scientific simulation environment, which combines high expressiveness with high runtime performance.

References

  1. Abramowitz, M. and Stegun, I. A. (1964). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York.
  2. Austern, M. H. (1998). Generic Programming and the STL: Using and Extending the C++ Standard Template Library. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.
  3. Berti, G. (2002). GrAL - The Grid Algorithms Library. In ICCS 7802: Proc. of the Conf. on Comp. Sci., volume 2331, pages 745-754, London, UK. Springer-Verlag.
  4. Boost (2007). Boost C++ Libraries 1.33. http://www.boost.org.
  5. Boost Phoenix 2 (2006). Boost Phoenix 2. http://spirit.sourceforge.net/.
  6. Deuflhard, P. (1976). Algorithms for the Summation of Certain Special Functions. Journal Computing, 17(1):37- 48.
  7. Fabri, A. (2001). CGAL - The Computational Geometry Algorithm Library. http://citeseer.ist.psu.edu/fabri01cgal.html.
  8. Heinzl, R. and Schwaha, P. (2007). Generic Scientific Simulation Environment. http://www.gsse.at.
  9. Heinzl, R., Schwaha, P., Spevak, M., and Grasser, T. (2006a). Performance Aspects of a DSEL for Scientific Computing with C++. In Proc. of the POOSC Conf., pages 37-41, Nantes, France.
  10. Heinzl, R., Spevak, M., Schwaha, P., and Selberherr, S. (2006b). A Generic Topology Library. In Library Centric Sofware Design, OOPSLA, pages 85-93, Portland, OR, USA.
  11. Kosina, H. (2003). VMC: a Code for Monte Carlo Simulation of Quantum Transport. In Proc. 12th MELARI/NID Workshop.
  12. Pion, S. and Fabri, A. (2006). A Generic Lazy Evaluation Scheme for Exact Geometric Computations. In Library Centric Sofware Design, OOPSLA, pages 75- 84, Portland, OR, USA.
  13. Scharfetter, D. and Gummel, H. (1969). Large-Signal Analysis of a Silicon Read Diode Oscillator. IEEE Trans. Electron Dev., 16(1):64-77.
  14. Selberherr, S. (1984). Analysis and Simulation of Semiconductor Devices. Springer, Wien-New York.
  15. Siek, J., Lee, L.-Q., and Lumsdaine, A. (2002). The Boost Graph Library: User Guide and Reference Manual. Addison-Wesley.
Download


Paper Citation


in Harvard Style

Schwaha P., Schwaha M., Heinzl R., Ungersboeck E. and Selberherr S. (2007). SIMULATION METHODOLOGIES FOR SCIENTIFIC COMPUTING - Modern Application Design . In Proceedings of the Second International Conference on Software and Data Technologies - Volume 2: ICSOFT, ISBN 978-989-8111-06-7, pages 270-276. DOI: 10.5220/0001338802700276


in Bibtex Style

@conference{icsoft07,
author={Philipp Schwaha and Markus Schwaha and René Heinzl and Enzo Ungersboeck and Siegfried Selberherr},
title={SIMULATION METHODOLOGIES FOR SCIENTIFIC COMPUTING - Modern Application Design},
booktitle={Proceedings of the Second International Conference on Software and Data Technologies - Volume 2: ICSOFT,},
year={2007},
pages={270-276},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001338802700276},
isbn={978-989-8111-06-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Second International Conference on Software and Data Technologies - Volume 2: ICSOFT,
TI - SIMULATION METHODOLOGIES FOR SCIENTIFIC COMPUTING - Modern Application Design
SN - 978-989-8111-06-7
AU - Schwaha P.
AU - Schwaha M.
AU - Heinzl R.
AU - Ungersboeck E.
AU - Selberherr S.
PY - 2007
SP - 270
EP - 276
DO - 10.5220/0001338802700276