A TRANSCEIVER CONCEPT BASED ON A SOFTWARE DEFINED RADIO APPROACH

Admir Burnic, Alex Vießmann, Tobias Scholand, Arjang Hessamian-Alinejad, Guido H. Bruck, Peter Jung

2006

Abstract

In this communication, a software defined radio (SDR) transceiver design, termed FALCON, will be presented. The FALCON is entirely based on a modular signal processing concept; the FALCON receiver uses modules which process and generate log-likelihood ratio (LLR) signals, hence, providing the capability of a plug-and-play-type reconfigurability. The authors’ view on re-configurability will be discussed in this communication. The FALCON currently deploys commercial radio frequency (RF) front-ends provided by Atmel, analogue and interface boards developed and implemented by the authors and DSP Starter Kits (DSK) based on TI TMS320C6416 DSPs (digital signal processors), which have been provided by Texas Instruments. The hardware/software integration has been done in the laboratory of the authors. Furthermore, the authors developed all signal processing modules in C language tailored for the TMS320C6416 DSPs. This paper will also illustrate measurement results obtained with the FALCON will be given. For an easy comparison of these results with widely published simulation results the authors will consider UMTS/W-CDMA. It will be shown that the FALCON provides a superb performance.

References

  1. Grass, E.; Tittelbach-Helmrich, K.; Jagdhold, U.; Troya, A.; Lippert, G.; Kruger, O.; Lehmann, J.; Maharatna, K.; Dombrowski, K.F.; Fiebig, N.; Kraemer, R.; Mahonen, P.: On the single-chip implementation of a hiperlan/2 and IEEE 802.11a capable modem. IEEE Personal Communications, vol. 8 (2001) no. 6, pp. 48- 57.
  2. Jondral, F.K.: Software-defined radio - basics and evolution to cognitive radio. EURASIP Journal on Wireless Communications and Networking, vol. 3 (2005), pp. 275-283, including all references.
  3. Special Issue on software radio. IEEE Communications Magazine, vol. 33 (1995), no. 5.
  4. Special Issue on globalization of software radio. IEEE Communications Magazine, vol. 37 (1999), no. 2.
  5. Srikanteswara, S.; Reed, J.H.; Athanas, P.; Boyle, R.: A soft radio architecture for reconfigurable platforms. IEEE Communications Magazine, vol. 38 (2000), no. 2, pp. 140-147.
  6. Glossner, J.; Iancu, D.; Lu, J.; Hokenek, E.; Moudgill, M.: A software-defined communications baseband design. IEEE Communications Magazine, vol. 41 (2003), no. 1, pp. 120-128.
  7. Drew, N.J.; Dillinger, M.M.: Evolution toward reconfigurable user equipment. IEEE Communications Magazine, vol. 39 (2001), no. 2, pp. 158-164.
  8. Hoffmeyer, J.; Park, I.-P.; Majmundar, M.; Blust, S.: Radio software download for commercial wireless reconfigurable devices. IEEE Radio Communications (March 2004), pp. S26-S32.
  9. Whalen, A.D.: Detection of signals in noise. San Diego: Academic Press, 1971.
  10. Chiu, M.-C.: A low-complexity SISO multiuser detector for iterative decoding of asynchronous CDMA systems with convolutional codes. IEEE Transactions on Vehicular Technology, vol. 54 (2005), pp. 516-524.
  11. Hagenauer, J.; Robertson, P.; Papke, L.: Iterative ('Turbo') decoding of systematic convolutional codes with the MAP and SOVA algorithms. Proceedings of the ITGConference on Source and Channel Coding (SCC'94), München, pp. 164-172, 1994.
  12. Hagenauer, J.: Source-controlled channel decoding. IEEE Transactions on Communications, vol. 43 (1995), pp. 2449-2457.
  13. Jung, P.: Analyse und Entwurf digitaler Mobilfunksysteme. Stuttgart: B.G. Teubner, 1997.
  14. Montorsi, G.; Benedetto, S.: Design of fixed-point iterative decoders for concatenated codes with interleavers. IEEE Journal on Selected Areas in Communications, vol. 19 (2001), pp. 871-882.
  15. Faber, T.; Jung, P.: Digital signal processing complexity of Turbo-Codes for UMTS on the TMS320C6416. Proceedings of the IEEE International Conference on Computers and Devices for Communication (CODEC'2004), Kalkota/India, January 2004.
  16. Faber, T.: Turbo-Empfänger für digitale Mobilfunksysteme, gezeigt am Beispiel eines “Software Defined Radio”-Demonstrators. Series „Selected Topics in Communications Technologies,“ (edited by Prof. Dr.-Ing. habil. Peter Jung), Aachen: Shaker, 2005.
  17. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the IEEE, vol. 77 (1989) no. 4, pp. 541-580.
  18. Reisig, W.: Petri nets: An introduction. Berlin: Springer, 1985.
Download


Paper Citation


in Harvard Style

Burnic A., Vießmann A., Scholand T., Hessamian-Alinejad A., H. Bruck G. and Jung P. (2006). A TRANSCEIVER CONCEPT BASED ON A SOFTWARE DEFINED RADIO APPROACH . In Proceedings of the International Conference on Wireless Information Networks and Systems - Volume 1: WINSYS, (ICETE 2006) ISBN 978-972-8865-65-8, pages 26-33. DOI: 10.5220/0002085700260033


in Bibtex Style

@conference{winsys06,
author={Admir Burnic and Alex Vießmann and Tobias Scholand and Arjang Hessamian-Alinejad and Guido H. Bruck and Peter Jung},
title={A TRANSCEIVER CONCEPT BASED ON A SOFTWARE DEFINED RADIO APPROACH},
booktitle={Proceedings of the International Conference on Wireless Information Networks and Systems - Volume 1: WINSYS, (ICETE 2006)},
year={2006},
pages={26-33},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002085700260033},
isbn={978-972-8865-65-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Wireless Information Networks and Systems - Volume 1: WINSYS, (ICETE 2006)
TI - A TRANSCEIVER CONCEPT BASED ON A SOFTWARE DEFINED RADIO APPROACH
SN - 978-972-8865-65-8
AU - Burnic A.
AU - Vießmann A.
AU - Scholand T.
AU - Hessamian-Alinejad A.
AU - H. Bruck G.
AU - Jung P.
PY - 2006
SP - 26
EP - 33
DO - 10.5220/0002085700260033