ACKNOWLEDGEMENTS
This work has received funding from the project
ForPharmacy (P2020-COMPETE-FEDER number
070053). This work has also received funding from
projects UIDB/00760/2020 and UIDP/00760/2020.
REFERENCES
Aguilera, A., Mellado, D., & Rojas, F. (2023). An
Assessment of In-the-Wild Datasets for Multimodal
Emotion Recognition. Sensors, 23(11).
American Psychiatric Association. (2013). Diagnostic and
statistical manual of mental disorders (5th ed.).
Anshul, A., Pranav, G. S., Rehman, M. Z. U., & Kumar, N.
(2023). A Multimodal Framework for Depression
Detection During COVID-19 via Harvesting Social
Media. IEEE Transactions on Computational Social
Systems.
Ayers, S., & de Visser, R. (2021). Psychology for Medicine
& Healthcare (3rd Edition) (Sage Publishing).
Bains, N., & Abdijadid, S. (2023, April 10). Major
Depressive Disorder. StatPeals.
https://www.ncbi.nlm.nih.gov/books/NBK559078/
Braquehais, M. D., & Vargas-Cáceres, S. (2023).
Psychiatric Issues Among Health Professionals. In
Medical Clinics of North America (Vol. 107, Issue 1,
pp. 131–142). W.B. Saunders.
Cai, Y., Li, X., & Li, J. (2023). Emotion Recognition Using
Different Sensors, Emotion Models, Methods and
Datasets: A Comprehensive Review. In Sensors (Vol.
23, Issue 5). MDPI.
Chikersal, P., Doryab, A., Tumminia, M., Villalba, D. K.,
Dutcher, J. M., Liu, X., Cohen, S., Creswell, K. G.,
Mankoff, J., David Creswell, J., Goel, M., & Dey, A.
K. (2021). Detecting depression and predicting its onset
using longitudinal symptoms captured by passive
sensing: A machine learning approach with robust
feature selection. ACM Transactions on Computer-
Human Interaction, 28(1).
Craske, M. G., Stein, M. B., Eley, T. C., Milad, M. R.,
Holmes, A., Rapee, R. M., & Wittchen, H. U. (2017).
Anxiety disorders. Nature Reviews Disease Primers, 3.
Dee, J., Dhuhaibawi, N., & Hayden, J. C. (2022). A
systematic review and pooled prevalence of burnout in
pharmacists. In International Journal of Clinical
Pharmacy. Springer Science and Business Media
Deutschland GmbH.
Dias, D., & Cunha, J. P. S. (2018). Wearable health
devices—vital sign monitoring, systems and
technologies. In Sensors (Switzerland) (Vol. 18, Issue
8). MDPI AG.
Dias, T., Vitorino, J., Oliveira, J., Oliveira, N., Maia, E., &
Praça, I. (2023). IFEED: Interactive Facial Expression
and Emotion Detection Dataset. Zenodo.
Dogan, G., & Akbulut, F. P. (2023). Multi-modal fusion
learning through biosignal, audio, and visual content for
detection of mental stress. Neural Computing and
Applications, 35(34), 24435–24454.
Edú‐valsania, S., Laguía, A., & Moriano, J. A. (2022).
Burnout: A Review of Theory and Measurement. In
International Journal of Environmental Research and
Public Health (Vol. 19, Issue 3). MDPI.
Eom, S., Eom, S., & Washington, P. (2023). SIM-CNN:
Self-Supervised Individualized Multimodal Learning
for Stress Prediction on Nurses Using Biosignals.
Escobar-Linero, E., Muñoz-Saavedra, L., Luna-Perejón, F.,
Sevillano, J. L., & Domínguez-Morales, M. (2023).
Wearable Health Devices for Diagnosis Support:
Evolution and Future Tendencies. In Sensors (Vol. 23,
Issue 3). MDPI.
Francese, R., & Attanasio, P. (2022). Emotion detection for
supporting depression screening. Multimedia Tools and
Application.
G.L. Bajaj Institute of Technology & Management. (2022).
2022 International Conference on Computational
Intelligence and Sustainable Engineering Solutions
(CISES) 20-21 May 2022.
Gregório, J., Cavaco, A. M., & Lapão, L. V. (2017). How
to best manage time interaction with patients?
Community pharmacist workload and service provision
analysis. Research in Social and Administrative
Pharmacy, 13(1), 133–147.
Gupta, A., Raut, A., Yadav, R., Kumar, M., & Chaurasiya,
V. K. (2022). A Hybrid Approach based Stress
Monitoring System for Office Environment using IoT.
INDICON 2022 - 2022 IEEE 19th India Council
International Conference.
Harrison, P., Cowen, P., Burns, T., & Fazel, M. (2017).
Shorter Oxford Textbook of Psychiatry. Shorter Oxford
Textbook of Psychiatry.
Hill, J. E., Harris, C., Danielle L., C., Boland, P., Doherty,
A. J., Benedetto, V., Gita, B. E., & Clegg, A. J. (2022).
The prevalence of mental health conditions in
healthcare workers during and after a pandemic:
Systematic review and meta-analysis. In Journal of
Advanced Nursing (Vol. 78, Issue 6, pp. 1551–1573).
John Wiley and Sons Inc.
Jakovljevic, B., Stojanovic, K., Turnic, T. N., &
Jakovljevic, V. L. (2021). Burnout of physicians,
pharmacists and nurses in the course of the covid-19
pandemic: A serbian cross-sectional questionnaire
study. International Journal of Environmental
Research and Public Health, 18(16).
Lerner, D., Adler, D. A., Rogers, W. H., Chang, H.,
Lapitsky, L., McLaughlin, T., & Reed, J. (2010). Work
Performance of Employees With Depression: The
Impact of Work Stressors. American Journal of Health
Promotion : AJHP, 24(3), 205.
Lichstein, K. L., Durrence, H. H., Taylor, D. J., Bush, A. J.,
& Riedel, B. W. (2003). Quantitative criteria for
insomnia. Behaviour Research and Therapy, 41(4),
427–445.
Lu, L., Zhang, J., Xie, Y., Gao, F., Xu, S., Wu, X., & Ye,
Z. (2020). Wearable health devices in health care:
Narrative systematic review. In JMIR mHealth and
uHealth (Vol. 8, Issue 11). JMIR Publications Inc.