Boehnen, C. (2019). Nist special database 302: Nail
to nail fingerprint challenge.
Gavas, E. and Namboodiri, A. (2023). Finger-UNet: A u-
net based multi-task architecture for deep fingerprint
enhancement. In Proceedings of the 18th Interna-
tional Joint Conference on Computer Vision, Imag-
ing and Computer Graphics Theory and Applications.
SCITEPRESS - Science and Technology Publications.
Greenberg, S., Aladjem, M., and Kogan, D. (2002). Finger-
print image enhancement using filtering techniques.
Real-Time Imaging, 8(3):227–236.
Grill, J.-B., Strub, F., Altch
´
e, F., Tallec, C., Richemond, P.,
Buchatskaya, E., Doersch, C., Avila Pires, B., Guo,
Z., Gheshlaghi Azar, M., et al. (2020). Bootstrap your
own latent-a new approach to self-supervised learn-
ing. Advances in neural information processing sys-
tems, 33:21271–21284.
Gutmann, M. and Hyv
¨
arinen, A. (2010). Noise-contrastive
estimation: A new estimation principle for unnormal-
ized statistical models. In Proceedings of the thir-
teenth international conference on artificial intelli-
gence and statistics, pages 297–304. JMLR Workshop
and Conference Proceedings.
Hong, L., Wan, Y., and Jain, A. (1998). Fingerprint image
enhancement: Algorithm and performance evaluation.
IEEE transactions on pattern analysis and machine
intelligence, 20(8):777–789.
Jain, A., Hong, L., and Bolle, R. (1997). On-line fingerprint
verification. IEEE transactions on pattern analysis
and machine intelligence, 19(4):302–314.
Jain, A., Ross, A., and Prabhakar, S. (2001). Finger-
print matching using minutiae and texture features. In
Proceedings 2001 International Conference on Image
Processing (Cat. No. 01CH37205), volume 3, pages
282–285. IEEE.
Jaiswal, A., Babu, A. R., Zadeh, M. Z., Banerjee, D., and
Makedon, F. (2020). A survey on contrastive self-
supervised learning. Technologies, 9(1):2.
Jing, L. and Tian, Y. (2020). Self-supervised visual feature
learning with deep neural networks: A survey. IEEE
transactions on pattern analysis and machine intelli-
gence, 43(11):4037–4058.
Kim, B.-G., Kim, H.-J., and Park, D.-J. (2002). New en-
hancement algorithm for fingerprint images. In 2002
International Conference on Pattern Recognition, vol-
ume 3, pages 879–882. IEEE.
Liu, M., Chen, X., and Wang, X. (2014). Latent fingerprint
enhancement via multi-scale patch based sparse repre-
sentation. IEEE Transactions on Information Foren-
sics and Security, 10(1):6–15.
Liu, M. and Qian, P. (2020). Automatic segmentation and
enhancement of latent fingerprints using deep nested
unets. IEEE Transactions on Information Forensics
and Security, 16:1709–1719.
Liu, X., Zhang, F., Hou, Z., Mian, L., Wang, Z., Zhang, J.,
and Tang, J. (2021). Self-supervised learning: Gener-
ative or contrastive. IEEE transactions on knowledge
and data engineering, 35(1):857–876.
Maio, D., Maltoni, D., Cappelli, R., Wayman, J. L., and
Jain, A. K. (2002a). Fvc2000: Fingerprint verification
competition. IEEE transactions on pattern analysis
and machine intelligence, 24(3):402–412.
Maio, D., Maltoni, D., Cappelli, R., Wayman, J. L., and
Jain, A. K. (2002b). Fvc2002: Second fingerprint ver-
ification competition. In 2002 International Confer-
ence on Pattern Recognition, volume 3. IEEE.
Maio, D., Maltoni, D., Cappelli, R., Wayman, J. L., and
Jain, A. K. (2004). Fvc2004: Third fingerprint ver-
ification competition. In Zhang, D. and Jain, A. K.,
editors, Biometric Authentication, pages 1–7, Berlin,
Heidelberg. Springer Berlin Heidelberg.
Maltoni, D., Maio, D., Jain, A. K., and Feng, J. (2009). Fin-
gerprint Matching, pages 167–233. Springer London,
London.
Maltoni, D., Maio, D., Jain, A. K., and Feng, J. (2022).
Fingerprint Sensing, pages 63–114. Springer Interna-
tional Publishing, Cham.
Nguyen, D.-L., Cao, K., and Jain, A. K. (2018). Robust
minutiae extractor: Integrating deep networks and fin-
gerprint domain knowledge. In 2018 International
Conference on Biometrics (ICB), pages 9–16. IEEE.
Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and
Lerer, A. (2017). Automatic differentiation in pytorch.
Qian, P., Li, A., and Liu, M. (2019). Latent fingerprint en-
hancement based on denseunet. In 2019 International
Conference on Biometrics (ICB), pages 1–6. IEEE.
Rahman, S. M., Ahmad, M. O., and Swamy, M. (2008).
Improved image restoration using wavelet-based de-
noising and fourier-based deconvolution. In 2008 51st
Midwest Symposium on Circuits and Systems, pages
249–252. IEEE.
Ratha, N. K., Karu, K., Chen, S., and Jain, A. K. (1996).
A real-time matching system for large fingerprint
databases. IEEE transactions on pattern analysis and
machine intelligence, 18(8):799–813.
Reimers, N. and Gurevych, I. (2019). Sentence-bert: Sen-
tence embeddings using siamese bert-networks.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net:
Convolutional networks for biomedical image seg-
mentation. In International Conference on Medical
image computing and computer-assisted intervention,
pages 234–241. Springer.
Sherlock, B., Monro, D., and Millard, K. (1992). Algorithm
for enhancing fingerprint images. Electronics letters,
18(28):1720–1721.
Tang, Y., Gao, F., Feng, J., and Liu, Y. (2017). Fingernet:
An unified deep network for fingerprint minutiae ex-
traction. In 2017 IEEE International Joint Conference
on Biometrics (IJCB), pages 108–116. IEEE.
Wayman, J., Jain, A., Maltoni, D., and Maio, D. (2005).
An Introduction to Biometric Authentication Systems,
pages 1–20. Springer London, London.
Yang, J., Liu, L., and Jiang, T. (2002). Improved method
for extraction of fingerprint features. In Second Inter-
national Conference on Image and Graphics, volume
4875, pages 552–558. SPIE.
Zaeri, N. (2011). Minutiae-based fingerprint extraction and
recognition. Biometrics.
VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications
828