2023), volume 14298 of Lecture Notes in Computer
Science, page 45–56. Springer.
Dalmia, A., Kakileti, S. T., and Manjunath, G. (2018). Ex-
ploring deep learning networks for tumour segmenta-
tion in infrared images. In 14th Quantitative Infrared
Thermography Conference, Berlin, Germany. DGZfP.
Digit3D projects (2023). Digit3d projects. Acessado em 8
de novembro de 2023.
Jeyanathan, J. S., Shenbagavalli, A., Venkatraman, B., and
Menaka, M. (2018). Analysis of breast thermograms
in lateral views using texture features. In TENCON
2018 - 2018 IEEE Region 10 Conference, pages 2017–
2022, Jeju Island, Korea.
Jockers, D. (2019). Thermography: The new gold standard
in breast cancer screening.
Koay, J., Herry, C., and Frize, M. (2004). Analysis of breast
thermography with an artificial neural network. In The
26th Annual International Conference of the IEEE En-
gineering in Medicine and Biology Society, volume 1,
pages 1159–1162, San Francisco, California. IEEE.
Lanisa, N., Cheok, N. S., and Wee, L. K. (2014). Color
morphology and segmentation of the breast thermog-
raphy image. In 2014 IEEE Conference on Biomedical
Engineering and Sciences (IECBES), pages 772–775,
Miri, Sarawak, Malaysia. IEEE.
Otmani, I., Amroune, M., Rahmani, F. L., Soltani, H.,
Benkhelifa, E., and Conci, A. (2024). Lamis-dmdb:
A new full field digital mammography database for
breast cancer ai-cad researches. Biomedical Signal
Processing and Control, 90:105823.
Pricigalli, N., Moura, E., and Conci, A. (2023). Is symetry
important in breast infrared examinations? In Kak-
ileti, S., Manjunath, G., Schwartz, R., and Frangi,
A., editors, Artificial Intelligence Over Infrared Im-
ages for Medical Applications (AIIIMA 2023), volume
14298 of Lecture Notes in Computer Science, page
67–79. Springer.
Raghavan, K., B, S., and v, K. (2023). Attention guided
grad-cam: an improved explainable artificial intelli-
gence model for infrared breast cancer detection. Mul-
timed Tools Appl.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net:
Convolutional networks for biomedical image seg-
mentation. In International Conference on Medical
image computing and computer-assisted intervention,
pages 234–241, Heidelberg, Berlin. Springer.
Saha, A., Kakileti, S., Dedhiya, R., and Manjunath, G.
(2023). 3d-breastnet: A self-supervised deep learn-
ing network for reconstruction of 3d breast surface
from 2d thermal images. In Kakileti, S., Manjunath,
G., Schwartz, R., and Frangi, A., editors, Artificial In-
telligence Over Infrared Images for Medical Applica-
tions (AIIIMA 2023), volume 14298 of Lecture Notes
in Computer Science. Springer, Cham.
Silva, L., C. M. Saade, D., Sequeiros Olivera, G., Silva,
A., Paiva, A., Bravo, R., and Conci, A. (2014). A
new database for breast research with infrared image.
Journal of Medical Imaging and Health Informatics,
4(1):92–100.
Silva, S. V. (2010). Reconstruc¸
˜
ao da Geometria da Mama
a partir de Imagens Termogr
´
aficas[Reconstruction of
Breast Geometry from Thermographic Images]. PhD
thesis, Computer Institute. Universidade Federal Flu-
minense, Niteroi, Brazil.
Suzuki, S. et al. (1985). Topological structural analy-
sis of digitized binary images by border following.
Computer vision, graphics, and image processing,
30(1):32–46.
Venkataramani, K., Mestha, L. K., Ramachandra, L.,
Prasad, S., Kumar, V., and Raja, P. J. (2015). Semi-
automated breast cancer tumor detection with ther-
mographic video imaging. In 2015 37th Annual In-
ternational Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), pages 2022–
2025, Milan, Italy. IEEE.
Viana, M. (2016). Reconstruc¸
˜
ao tridimensional da mama
feminina a partir de imagens m
´
edicas por infraver-
melho com aux
´
ılio de geometrias substitutas[Three-
dimensional reconstruction of the female mother from
infrared medical images with the aid of surrogate ge-
ometries]. PhD thesis, Universidade Federal de Per-
nambuco.
zhixuhao (2023). Github - zhixuhao/unet. Acessado em 8
de novembro de 2023.
VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications
146