Polyakovskiy, S., Bonyadi, M. R., Wagner, M.,
Michalewicz, Z., and Neumann, F. (2014). A
comprehensive benchmark set and heuristics for the
traveling thief problem. In Proceedings of the 2014
Annual Conference on Genetic and Evolutionary
Computation, pages 477–484.
Potvin, J.-Y. (1996). Genetic algorithms for the traveling
salesman problem. Annals of Operations Research,
63:337–370.
Press, A. (2004). Husband-wife team out bid after 24
years. ESPN online Numerical Optimisation. (Con-
sulted June 21st, 2023).
Ribeiro, C. C. and Urrutia, S. (2007). Heuristics for the mir-
rored traveling tournament problem. European Jour-
nal of Operational Research, 179(3):775–787.
Ruth, B., Jackson, S. J., and Mays, W. T. S. H. K. (2023).
The threestrike algorithm for winning matches: Say
it Ain’t So Joe. Journal of Baseball Algortihms,
37(1):1101–1503.
Sachdeva, R., Neumann, F., and Wagner, M. (2020). The
dynamic travelling thief problem: Benchmarks and
performance of evolutionary algorithms. In Neural
Information Processing: 27th International Confer-
ence, ICONIP 2020, Bangkok, Thailand, November
18–22, 2020, Proceedings, Part V 27, pages 220–228.
Springer.
Sazhinov, N., Horn, R., Adriaans, P., and van den Berg, D.
(2023). The partition problem, and how the distribu-
tion of input bits affects the solving process (submit-
ted).
Serdyukov, A. (1978). O nekotorykh ekstremal’nykh
obkhodakh v grafakh. Upravlyayemyye sistemy,
17:76–79. Original article in Russian is here: http://
nas1.math.nsc.ru/aim/journals/us/us17/us17 007.pdf.
Sleegers, J., Olij, R., van Horn, G., and van den Berg, D.
(2020). Where the really hard problems aren’t. Oper-
ations Research Perspectives, 7:100160.
Solberg, H. A. and Gaustad, T. (2022). International
sport broadcasting: A comparison of european soc-
cer leagues and the major north american team sports.
Sport Broadcasting for Managers, pages 84–102.
Thielen, C. and Westphal, S. (2010). Approximating the
traveling tournament problem with maximum tour
length 2. In Algorithms and Computation: 21st Inter-
national Symposium, ISAAC 2010, Jeju, Korea, De-
cember 15-17, 2010, Proceedings, Part II 21, pages
303–314. Springer.
Thielen, C. and Westphal, S. (2011). Complexity of the
traveling tournament problem. Theoretical Computer
Science, 412(4-5):345–351.
Thielen, C. and Westphal, S. (2012). Approximation algo-
rithms for ttp (2). Mathematical Methods of Opera-
tions Research, 76(1):1–20.
Uthus, D. C., Riddle, P. J., and Guesgen, H. W. (2009). An
ant colony optimization approach to the traveling tour-
nament problem. In Proceedings of the 11th Annual
conference on Genetic and evolutionary computation,
pages 81–88.
van den Berg, D. and Adriaans, P. (2021). Subset sum and
the distribution of information. In IJCCI, pages 134–
140.
van Eck, O. and van den Berg, D. (2023). Quantify-
ing instance hardness of protein folding within the
hp-model (accepted, publication pending). In IEEE
CIBCB 2023.
Verduin, K., Weise, T., and van den Berg, D. (2023). Why
is the traveling tournament problem not solved with
genetic algorithms?
Wagner, M. (2016). Stealing items more efficiently with
ants: a swarm intelligence approach to the travelling
thief problem. In Swarm Intelligence: 10th Inter-
national Conference, ANTS 2016, Brussels, Belgium,
September 7-9, 2016, Proceedings 10, pages 273–281.
Springer.
Wagner, M., Lindauer, M., Mısır, M., Nallaperuma, S., and
Hutter, F. (2018). A case study of algorithm selection
for the traveling thief problem. Journal of Heuristics,
24:295–320.
Weise, T., Li, X., Chen, Y., and Wu, Z. (2021). Solving
job shop scheduling problems without using a bias
for good solutions. In Proceedings of the Genetic
and Evolutionary Computation Conference Compan-
ion, pages 1459–1466.
Westphal, S. and Noparlik, K. (2014). A 5.875-
approximation for the traveling tournament problem.
Annals of Operations Research, 218:347–360.
Wu, J., Polyakovskiy, S., Wagner, M., and Neumann, F.
(2018). Evolutionary computation plus dynamic pro-
gramming for the bi-objective travelling thief prob-
lem. In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 777–784.
Wu, J., Wagner, M., Polyakovskiy, S., and Neumann, F.
(2017). Exact approaches for the travelling thief prob-
lem. In Simulated Evolution and Learning: 11th Inter-
national Conference, SEAL 2017, Shenzhen, China,
November 10–13, 2017, Proceedings 11, pages 110–
121. Springer.
Xiao, M. and Kou, S. (2016). An improved approxi-
mation algorithm for the traveling tournament prob-
lem with maximum trip length two. In 41st Inter-
national Symposium on Mathematical Foundations of
Computer Science (MFCS 2016). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.
Yafrani, M. E., Chand, S., Neumann, A., Ahiod, B., and
Wagner, M. (2017). Multi-objectiveness in the single-
objective traveling thief problem. In Proceedings of
the Genetic and Evolutionary Computation Confer-
ence Companion, pages 107–108.
Yafrani, M. E., Martins, M. S., Krari, M. E., Wagner, M.,
Delgado, M. R., Ahiod, B., and L
¨
uders, R. (2018). A
fitness landscape analysis of the travelling thief prob-
lem. In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 277–284.
Yafrani, M. E., Scoczynski, M., Delgado, M. R., L
¨
uders,
R., Nielsen, P., and Wagner, M. (2022). On the fitness
landscapes of interdependency models in the travel-
ling thief problem. In Proceedings of the Genetic
and Evolutionary Computation Conference Compan-
ion, pages 188–191.
ECTA 2023 - 15th International Conference on Evolutionary Computation Theory and Applications
256