hypertextual web search engine.
Cer, D., Yang, Y., Kong, S.-y., Hua, N., Limtiaco, N., John,
R. S., Constant, N., Guajardo-Cespedes, M., Yuan,
S., Tar, C., et al. (2018). Universal sentence encoder.
arXiv preprint arXiv:1803.11175.
Cetindil, I., Esmaelnezhad, J., Li, C., and Newman, D.
(2012). Analysis of instant search query logs. In
WebDB, pages 7–12. Citeseer.
Chandar, P., Garcia-Gathright, J., Hosey, C., St. Thomas,
B., and Thom, J. (2019). Developing evaluation met-
rics for instant search using mixed methods methods.
In Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in Informa-
tion Retrieval, pages 925–928.
Dean, J. (2009). Challenges in building large-scale informa-
tion retrieval systems. In Keynote of the 2nd ACM In-
ternational Conference on Web Search and Data Min-
ing (WSDM), volume 10.
Fafalios, P., Kitsos, I., and Tzitzikas, Y. (2012). Scal-
able, flexible and generic instant overview search. In
Proceedings of the 21st International Conference on
World Wide Web, pages 333–336.
Fafalios, P. and Tzitzikas, Y. (2011). Exploiting available
memory and disk for scalable instant overview search.
In International Conference on Web Information Sys-
tems Engineering, pages 101–115. Springer.
Fagni, T., Perego, R., Silvestri, F., and Orlando, S. (2006).
Boosting the performance of web search engines:
Caching and prefetching query results by exploiting
historical usage data. ACM Transactions on Informa-
tion Systems (TOIS), 24(1):51–78.
Feng, M., Xiang, B., Glass, M. R., Wang, L., and Zhou, B.
(2015). Applying deep learning to answer selection:
A study and an open task. In 2015 IEEE Workshop
on Automatic Speech Recognition and Understanding
(ASRU), pages 813–820. IEEE.
Frej, J., Schwab, D., and Chevallet, J.-P. (2019). Wikir:
A python toolkit for building a large-scale wikipedia-
based english information retrieval dataset. arXiv
preprint arXiv:1912.01901.
Gan, Q. and Suel, T. (2009). Improved techniques for re-
sult caching in web search engines. In Proceedings of
the 18th international conference on World wide web,
pages 431–440.
Gomaa, W. H., Fahmy, A. A., et al. (2013). A survey of
text similarity approaches. International Journal of
Computer Applications, 68(13):13–18.
Grissom II, A., He, H., Boyd-Graber, J., Morgan, J., and
Daum
´
e III, H. (2014). Don’t until the final verb
wait: Reinforcement learning for simultaneous ma-
chine translation. In Proceedings of the 2014 Confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1342–1352.
Gu, J., Neubig, G., Cho, K., and Li, V. O. (2016). Learning
to translate in real-time with neural machine transla-
tion. arXiv preprint arXiv:1610.00388.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8):1735–1780.
Ji, S., Li, G., Li, C., and Feng, J. (2009). Efficient interac-
tive fuzzy keyword search. In Proceedings of the 18th
international conference on World wide web, pages
371–380.
Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.
Li, G., Ji, S., Li, C., and Feng, J. (2011). Efficient
fuzzy full-text type-ahead search. The VLDB Journal,
20(4):617–640.
Li, G., Wang, J., Li, C., and Feng, J. (2012). Supporting
efficient top-k queries in type-ahead search. In Pro-
ceedings of the 35th international ACM SIGIR con-
ference on Research and development in information
retrieval, pages 355–364.
Long, X. and Suel, T. (2006). Three-level caching for ef-
ficient query processing in large web search engines.
World Wide Web, 9(4):369–395.
Markatos, E. P. (2001). On caching search engine query
results. Computer Communications, 24(2):137–143.
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M.
(2013). Playing atari with deep reinforcement learn-
ing. arXiv preprint arXiv:1312.5602.
Nguyen, T., Rosenberg, M., Song, X., Gao, J., Tiwary,
S., Majumder, R., and Deng, L. (2016). Ms marco:
A human-generated machine reading comprehension
dataset.
Pennington, J., Socher, R., and Manning, C. D. (2014).
Glove: Global vectors for word representation. In
Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP),
pages 1532–1543.
Robertson, S. and Zaragoza, H. (2009). The probabilistic
relevance framework: BM25 and beyond. Now Pub-
lishers Inc.
Saraiva, P. C., Silva de Moura, E., Ziviani, N., Meira, W.,
Fonseca, R., and Ribeiro-Neto, B. (2001). Rank-
preserving two-level caching for scalable search en-
gines. In Proceedings of the 24th annual international
ACM SIGIR conference on Research and development
in information retrieval, pages 51–58.
Satija, H. and Pineau, J. (2016). Simultaneous machine
translation using deep reinforcement learning. In
ICML 2016 Workshop on Abstraction in Reinforce-
ment Learning.
Tran, N. K. and Niedere
´
ee, C. (2018). Multihop attention
networks for question answer matching. In The 41st
International ACM SIGIR Conference on Research
& Development in Information Retrieval, pages 325–
334.
Van Gysel, C. and de Rijke, M. (2018). Pytrec eval: An ex-
tremely fast python interface to trec eval. In The 41st
International ACM SIGIR Conference on Research
& Development in Information Retrieval, pages 873–
876.
Venkataraman, G., Lad, A., Guo, L., and Sinha, S. (2016a).
Fast, lenient and accurate: Building personalized in-
stant search experience at linkedin. In 2016 IEEE In-
ternational Conference on Big Data (Big Data), pages
1502–1511. IEEE.
Deep Reinforcement Agent for Efficient Instant Search
287