Janićijević, Lukić, M. J., & Veselinović, L. (2016).
Alternating current electric field modified synthesis of
hydroxyapatite bioceramics. Materials and Design,
109, 511–519.
https://doi.org/10.1016/j.matdes.2016.07.061
Kempkes, M., & Munderville, M. (2018). Pulsed electric
fields (PEF) processing of fruit and vegetables. IEEE
International Pulsed Power Conference, 2017.
https://doi.org/10.1109/PPC.2017.8291186
Leach, A. (2001). Molecular Modeling: Principles and
Applications. Prentice Hall, Upper Saddle River.
Lung, C. T., Chang, C. K., Cheng, F. C., Hou, C. Y., Chen,
M. H., Santoso, S. P., Yudhistira, B., & Hsieh, C. W.
(2022). Effects of pulsed electric field-assisted thawing
on the characteristics and quality of Pekin duck meat.
Food Chemistry, 390, 133137.
https://doi.org/10.1016/j.foodchem.2022.133137
Mendes-Oliveira, G., Jin, T. Z., & Campanella, O. H.
(2020). Modeling the inactivation of Escherichia coli
O157:H7 and Salmonella Typhimurium in juices by
pulsed electric fields: The role of the energy density.
Journal of Food Engineering, 282.
https://doi.org/10.1016/j.jfoodeng.2020.110001
Muthukumaran, A., Orsat, V., Bajgai, T. R., & Raghavan,
G. S. V. (2010). Effect of high electric field on food
processing. In Novel Food Processing: Effects on
Rheological and Functional Properties (pp. 437–457).
https://doi.org/10.1201/9781420071221-27
Nowosad, K., Sujka, M., Pankiewicz, U., & Kowalski, R.
(2021). The application of PEF technology in food
processing and human nutrition. Journal of Food
Science and Technology, 58(2), 397–411.
https://doi.org/10.1007/s13197-020-04512-4
Pang, L., Lu, G., Cheng, J., Lu, X., Ma, D., Li, Q., Li, Z.,
Zheng, J., Zhang, C., & Pan, S. (2021). Physiological
and biochemical characteristics of sweet potato
(Ipomoea batatas (L.) Lam) roots treated by a high
voltage alternating electric field during cold storage.
Postharvest Biology and Technology, 180, 111619.
https://doi.org/10.1016/j.postharvbio.2021.111619
Prabawa, S., Safitri, D. I., Hartanto, R., Amanto, B. S., &
Yudhistira, B. (2022). The effect of differences in
ozonation time and storage temperature on physical,
chemical, and sensory characteristics of Japanese
spinach (Spinacia oleracea L.). Food Research, 6(3),
203–214. https://doi.org/10.26656/fr.2017.6(3).350
Punthi, F., Yudhistira, B., Gavahian, M., Chang, C. K.,
Cheng, K. C., Hou, C. Y., & Hsieh, C. W. (2022).
Pulsed electric field-assisted drying: A review of its
underlying mechanisms, applications, and role in fresh
produce plant-based food preservation. Comprehensive
Reviews in Food Science and Food Safety, 5, 5109–
5130. https://doi.org/10.1111/1541-4337.13052
Sulaimana, A. S., Chang, C.-K., Hou, C.-Y., Yudhistira, B.,
Punthi, F., Lung, C.-T., Cheng, K.-C., Santoso, S. P., &
Hsieh, C.-W. (2021). Effect of Oxidative Stress on
Physicochemical Quality of Taiwanese Seagrape
(Caulerpa lentillifera) with the Application of
Alternating Current Electric Field (ACEF) during Post-
Harvest Storage. Processes, 9(6), 1–25.
https://doi.org/10.3390/pr9061011
Sulaimana, A. S., Yudhistira, B., Chang, C., & Gavahian,
M. (2022). Optimized Alternating Current Electric
Field and Light Irradiance for Caulerpa lentillifera
Biomass Sustainability — An Innovative Approach for
Potential Postharvest Applications. Sustainability, 14,
1–16. https://doi.org/10.3390/su142114361
Tieleman, D. P. (2004). The molecular basis of
electroporation. BMC Biochemistry, 5(10), 1–12.
https://doi.org/10.1186/1471-2091-5-10
Toepfl, S., Heinz, V., & Knorr, D. (2007). High intensity
pulsed electric fields applied for food preservation.
Chemical Engineering and Processing: Process
Intensification, 46(6), 537–546.
https://doi.org/10.1016/j.cep.2006.07.011
van Wyk, S., Silva, F. V. M., & Farid, M. M. (2019). Pulsed
electric field treatment of red wine: Inactivation of
Brettanomyces and potential hazard caused by metal
ion dissolution. Innovative Food Science and Emerging
Technologies, 52, 57–65.
https://doi.org/10.1016/j.ifset.2018.11.001
Weaver, J. C. (2003). Electroporation of Biological
Membranes from Multicellular to Nano Scales. IEEE
Transactions on Dielectrics and Electrical Insulation,
10(5), 754–768.
https://doi.org/10.1109/TDEI.2003.1237325
Yudhistira, B., Punthi, F., Lin, J. A., Sulaimana, A. S.,
Chang, C. K., & Hsieh, C. W. (2022a). S-Allyl cysteine
in garlic (Allium sativum): Formation, biofunction, and
resistance to food processing for value-added product
development. Comprehensive Reviews in Food Science
and Food Safety, 21(3), 2665–2687.
https://doi.org/10.1111/1541-4337.12937
Yudhistira, B., Sulaimana, A. S., Punthi, F., Chang, C. K.,
Lung, C. T., Santoso, S. P., Gavahian, M., & Hsieh, C.
(2022b). Cold Plasma-Based Fabrication and
Characterization of Active Films Containing Different
Types of Myristica fragrans Essential Oil Emulsion.
Polymers, 14(8), 1–21.
https://doi.org/10.3390/polym14081618