was supported by EU and national funds through
the Portuguese Foundation for Science and Technol-
ogy (FCT), in the context of the AAL project APH-
ALARM (AAL/0006/2019) and funding to the re-
search unit IEETA (UIDB/00127/2020).
REFERENCES
Allen, M., McGrenere, J., and Purves, B. (2007). The de-
sign and field evaluation of phototalk: A digital image
communication application for people. In Proceed-
ings of the 9th International ACM SIGACCESS Con-
ference on Computers and Accessibility, Assets ’07,
page 187–194, New York, NY, USA. Association for
Computing Machinery.
Ascari, R. E. O. S., Silva, L., and Pereira, R. (2019). Person-
alized interactive gesture recognition assistive tech-
nology. In Proceedings of the 18th Brazilian Sympo-
sium on Human Factors in Computing Systems, IHC
’19, New York, NY, USA. Association for Computing
Machinery.
Elsahar, Y., Hu, S., Bouazza-Marouf, K., Kerr, D., and
Mansor, A. (2019). Augmentative and alternative
communication (aac) advances: A review of config-
urations for individuals with a speech disability. Sen-
sors, 19(8).
Elsahar, Y., Hu, S., Bouazza-Marouf, K., Kerr, D., Wade,
W., Hewett, P., Gaur, A., and Kaushik, V. (2021). A
study of decodable breathing patterns for augmenta-
tive and alternative communication. Biomedical Sig-
nal Processing and Control, 65:102303.
Guimaraes, A. M. (2021). Bedfeeling - sensing technolo-
gies for assistive communication in bed scenarios.
Master’s thesis, University of Aveiro, Aveiro, Portu-
gal.
Guimar
˜
aes, A., Rocha, A. P., Santana, L., Oliveira, I. C.,
Fernandes, J. M., Silva, S., and Teixeira, A. (2021).
Enhanced communication support for aphasia using
gesture recognition: The bedroom scenario. In 2021
IEEE International Smart Cities Conference (ISC2),
pages 1–4.
Kane, S. K., Linam-Church, B., Althoff, K., and McCall,
D. (2012). What we talk about: Designing a context-
aware communication tool for people with aphasia. In
Proceedings of the 14th International ACM SIGAC-
CESS Conference on Computers and Accessibility,
ASSETS ’12, page 49–56, New York, NY, USA. As-
sociation for Computing Machinery.
Kefer, K., Holzmann, C., and Findling, R. D. (2017). Eval-
uating the placement of arm-worn devices for recog-
nizing variations of dynamic hand gestures. J Mob
Multimed, 12(3–4):225–242.
Kurz, M., Gstoettner, R., and Sonnleitner, E. (2021). Smart
rings vs. smartwatches: Utilizing motion sensors for
gesture recognition. Appl Sci, 11(5).
Laxmidas, K., Avra, C., Wilcoxen, C., Wallace, M.,
Spivey, R., Ray, S., Polsley, S., Kohli, P., Thomp-
son, J., and Hammond, T. (2021). Commbo: Mod-
ernizing augmentative and alternative communication.
International Journal of Human-Computer Studies,
145:102519.
Le, T.-H., Tran, T.-H., and Pham, C. (2019). The internet-
of-things based hand gestures using wearable sensors
for human machine interaction. In 2019 Interna-
tional Conference on Multimedia Analysis and Pattern
Recognition (MAPR), pages 1–6.
Love, T. and Brumm, K. (2012). CHAPTER 10 - Language
processing disorders. In Peach, R. K. and Shapiro,
L. P., editors, Cognition and Acquired Language Dis-
orders, pages 202–226. Mosby, Saint Louis.
Luo, S., Rabbani, Q., and Crone, N. E. (2022). Brain-
computer interface: Applications to speech decoding
and synthesis to augment communication. Neurother-
apeutics, 19(1):263–273.
MbientLab, Inc. (2022). MMR – MetaMotionR. Accessed:
6 Nov. 2022.
Obiorah, M. G., Piper, A. M. M., and Horn, M. (2021). De-
signing aacs for people with aphasia dining in restau-
rants. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems, CHI ’21, New
York, NY, USA. Association for Computing Machin-
ery.
Oppo (2021). Oppo Watch Specification. Accessed: 8 Dec.
2022.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.
Peterson, V., Galv
´
an, C., Hern
´
andez, H., and Spies, R.
(2020). A feasibility study of a complete low-cost
consumer-grade brain-computer interface system. He-
liyon, 6(3):e03425.
Rocha, A. P., Guimar
˜
aes, A., Oliveira, I. C., Nunes, F., Fer-
nandes, J. M., Oliveira e Silva, M., Silva, S., and Teix-
eira, A. (2022). Toward supporting communication
for people with aphasia: The in-bed scenario. In Ad-
junct Publication of the 24th International Conference
on Human-Computer Interaction with Mobile Devices
and Services, MobileHCI ’22, New York, NY, USA.
Association for Computing Machinery.
Santana, L., Rocha, A. P., Guimar
˜
aes, A., Oliveira, I. C.,
Fernandes, J. M., Silva, S., and Teixeira, A. (2022).
Radar-based gesture recognition towards supporting
communication in aphasia: The bedroom scenario.
In Hara, T. and Yamaguchi, H., editors, Mobile and
Ubiquitous Systems: Computing, Networking and
Services, pages 500–506, Cham. Springer Interna-
tional Publishing.
Santana, L. F. d. V. (2021). Exploring radar sensing for ges-
ture recognition. Master’s thesis, University of Aveiro,
Aveiro, Portugal.
Wang, Q., Zhao, J., Xu, S., Zhang, K., Li, D., Bai, R.,
and Alenezi, F. (2022). ExHIBit: Breath-based aug-
mentative and alternative communication solution us-
ing commercial RFID devices. Information Sciences,
608:28–46.
Zhao, H., Wang, S., Zhou, G., and Zhang, D. (2019).
Ultigesture: A wristband-based platform for contin-
uous gesture control in healthcare. Smart Health,
11:45–65.
ICT4AWE 2023 - 9th International Conference on Information and Communication Technologies for Ageing Well and e-Health
74