ACKNOWLEDGEMENTS
The present work was carried out with the support of
the Coordenac¸
˜
ao de Aperfeic¸oamento de Pessoal de
N
´
ıvel Superior - Brazil (CAPES) - Financing Code
001 and Fundac¸
˜
ao de Amparo
`
a Pesquisa do Estado
de Minas Gerais (FAPEMIG) - APQ-01929-22. The
authors also thank CNPq and PUC Minas for their
partial support in the execution of this work.
REFERENCES
Andrews, S. (2009). In-close, a fast algorithm for com-
puting formal concepts. International Conference on
Conceptual Structures.
Andrews, S. and Orphanides, C. (2010). Analysis of large
data sets using formal concept lattices. 7th Interna-
tional Conference on Concept Lattices and Their Ap-
plications, pages 104–115.
Carpineto, C. and Romano, G. (2004). Concept data anal-
ysis: Theory and applications. John Wiley & Sons.
Cerf, L., Besson, J., Robardet, C., and Boulicaut, J.-F.
(2008). Data-peeler: Constraint-based closed pattern
mining in n-ary relations. In proceedings of the 2008
SIAM International conference on Data Mining, pages
37–48. SIAM.
Chunduri, R. K. and Cherukuri, A. K. (2019). Scalable for-
mal concept analysis algorithms for large datasets us-
ing spark. Journal of Ambient Intelligence and Hu-
manized Computing, 10(11):4283–4303.
de Moraes, N. R., Dias, S. M., Freitas, H. C., and Z
´
arate,
L. E. (2016). Parallelization of the nextclosure algo-
rithm for generating the minimum set of implication
rules. Artif. Intell. Research, 5(2):40–54.
Domingos-Silva, J. P. and Vieira, N. J. (2008). A classifi-
cation algorithm based on concept similarity. In Re-
search and Development in Intelligent Systems XXIV:
Proceedings of AI-2007, the Twenty-seventh SGAI In-
ternational Conference on Innovative Techniques and
Applications of Artificial Intelligence, pages 281–291.
Springer.
Fu, H. and Nguifo, E. M. (2004). A parallel algorithm to
generate formal concepts for large data. In Concept
Lattices: Second International Conference on Formal
Concept Analysis, ICFCA 2004, Sydney, Australia,
February 23-26, 2004. Proceedings 2, pages 394–401.
Springer.
Ganter, B., Stumme, G., and Wille, R. (2005). Formal con-
cept analysis: foundations and applications, volume
3626. Springer.
Ganter, B. and Wille, R. (2012). Formal concept analysis:
mathematical foundations. Springer Science & Busi-
ness Media.
Godinho, J., Gomide Gomes, J., Malheiro, R., and San-
tana, L. (2022). Hydrological forecast in maca
´
e river
basin with neural networks. Revista Brasileira de
Computac¸
˜
ao Aplicada, 14(1):70–80.
Jindal, R., Seeja, K., and Jain, S. (2020). Construction of
domain ontology utilizing formal concept analysis and
social media analytics. International Journal of Cog-
nitive Computing in Engineering, 1:62–69.
Kodagoda, N., Andrews, S., and Pulasinghe, K. (2017). A
parallel version of the in-close algorithm. In 2017 6th
National Conference on Technology and Management
(NCTM), pages 1–5. IEEE.
Linden, R. (2008). Algoritmos gen
´
eticos (2a edic¸ao). Bras-
port.
Mattson, T. G., He, Y., and Koniges, A. E. (2019). The
OpenMP Common Core Making OpenMP Simple
Again. The MIT Press.
Novais, J. P., Maciel, L. A., Souza, M. A., Song, M. A., and
Freitas, H. C. (2021). An open computing language-
based parallel brute force algorithm for formal con-
cept analysis on heterogeneous architectures. Con-
currency and Computation: Practice and Experience,
page e6220.
Pacheco, P. (2011). An introduction to parallel program-
ming. Elsevier.
Priss, U. (2006). Formal concept analysis in information
science. Annual review of information science and
technology, 40(1):521–543.
Quinn, M. J. (2003). Parallel programming. TMH CSE,
526:105.
Rimsa, A., Song, M. A., and Z
´
arate, L. E. (2013). Scgaz-a
synthetic formal context generator with density con-
trol for test and evaluation of fca algorithms. In 2013
IEEE International Conference on Systems, Man, and
Cybernetics, pages 3464–3470. IEEE.
Robey, R. and Zamora, Y. (2021). Parallel and high perfor-
mance computing. Simon and Schuster.
Van Der Pas, R., Stotzer, E., and Terboven, C. (2017). Using
OpenMP-The Next Step: Affinity, Accelerators, Task-
ing, and SIMD. The MIT Press.
Zhou, J., Yang, S., Wang, X., and Liu, W. (2021). A new
algorithm based on extent bit-array for computing for-
mal concepts. arXiv preprint arXiv:2111.00003.
ICEIS 2023 - 25th International Conference on Enterprise Information Systems
202