REFERENCES
Anwar, W., Franchi, N., and Fettweis, G. (2019). Physical
Layer Evaluation of V2X Communications Technolo-
gies. In 2019 IEEE 90th Vehicular Technology Confer-
ence (VTC2019-Fall), pages 1–7, Honolulu, HI, USA.
Boban, M., Barros, J., and Tonguz, O. (2014). Geometry-
Based Vehicle-to-Vehicle Channel Modeling for
Large-Scale Simulation. IEEE Transactions on Vehic-
ular Technology, 63(9):4146–4164.
Chtourou, A., Merdrignac, P., and Shagdar, O. (2021). Col-
lective perception service for connected vehicles and
roadside infrastructure. In 2021 IEEE 93rd Vehicu-
lar Technology Conference (VTC2021-Spring), pages
1–5.
Delooz, Q., Willecke, A., Garlichs, K., Hagau, A.-C., Wolf,
L., Vinel, A., and Festag, A. (2022). Analysis and
Evaluation of Information Redundancy Mitigation for
V2X Collective Perception. IEEE Access, 10:47076–
47093.
den Berghe, W. V. (2021). European Road Safety Observa-
tory Road Safety Thematic Report - Speed.
ETSI (2019a). ETSI TR 103 300-1 Intelligent Transport
System (ITS); Vulnerable Road Users (VRU) Aware-
ness.
ETSI (2019b). ETSI TR 103 562 v2.1.1 Intelligent Trans-
port System (ITS); Vehicular communications; Ba-
sic set of applications; Analysis of the Collective-
Perception Service (CPS).
ETSI (2020). ITS-G5 Access layer specification for Intel-
ligent Transport Systems operating in the 5 ghz fre-
quency band.
Garlichs, K., Kaya, C., and Wolf, L. (2020). Leverag-
ing the Collective Perception Service for CAM Infor-
mation Aggregation at Intersections. In 2020 IEEE
92nd Vehicular Technology Conference (VTC2020-
Fall), pages 1–5.
Krajzewicz, D., Hertkorn, G., R
¨
ossel, C., and Wagner, P.
(2002). SUMO - An Open-source Traffic Simulation.
In Proceedings of the 4th middle East Symposium on
Simulation and Modelling (MESM20002), pages 183–
187.
Lobo, S., Festag, A., and Facchi, C. (2022). Enhancing the
safety of vulnerable road users: Messaging protocols
for v2x communication.
Pacella, F., Bonetto, E., Castillo, G. A. G., Brevi, D., and
Scopigno, R. (2021). Implementation and Latency As-
sessment of a Prototype for C-ITS Collective Percep-
tion. In 2021 IEEE International Mediterranean Con-
ference on Communications and Networking (Medit-
Com), pages 100–105.
Riebl, R., G
¨
unther, H.-J., Facchi, C., and Wolf, L. (2015).
Artery: Extending Veins for VANET applications. In
2015 International Conference on Models and Tech-
nologies for Intelligent Transportation Systems (MT-
ITS), pages 450–456.
Schiegg, F., Brahmi, N., and Llatser, I. (2019). Analytical
Performance Evaluation of the Collective Perception
Service in C-V2X Mode 4 Networks. pages 181–188.
Schiegg, F. A., Llatser, I., Bischoff, D., and Volk, G. (2021).
Collective Perception: A Safety Perspective. Sensors,
21(1).
Sommer, C. and Dressler, F. (2011). Using the Right Two-
Ray Model? A Measurement Based Evaluation of
PHY Models in VANETs. In Proc. ACM MobiCom,
pages 1–3.
Wang, Z., Zheng, J., Wu, Y., and Mitton, N. (2017). A
Centrality-based RSU Deployment Approach for Ve-
hicular Ad Hoc Networks. In 2017 IEEE International
Conference on Communications (ICC), pages 1–5.
Willecke, A., Garlichs, K., Schulze, F., and Wolf, L. C.
(2021). Vulnerable Road Users Are Important As
Well: Persons in the Collective Perception Service. In
2021 IEEE Vehicular Networking Conference (VNC),
pages 24–31.
Yu, G., Li, H., Wang, Y., Chen, P., and Zhou, B. (2022).
A review on cooperative perception and control sup-
ported infrastructure-vehicle system. Green Energy
and Intelligent Transportation, 1(3):100023.
Enhancing Vulnerable Road User Awareness of Intelligent Transport Systems Through Relay and Aggregation of Collective Perception
Messages with Road Side Units
343