Figure 7: Profile sections of the FGs { ๐=1}
fabricated with different numbers of laser pulses.
5 CONCLUSIONS AND
OUTLOOK
For the fabrication of FGโs, a new method was
developed. The process is based on the fluorine laser
micro structuring and uses the mask projection
technique. The first step is the calculation of the
grating pattern and generation of a machine program
thereof. Following, the grating layout is transferred
into a VUV grade CaF
2
substrate using fluorine laser
micro structuring. The VUV grade CaF
2
is
transparent for 157 nm radiation, but in the laser
treated areas the roughness and therefore the
scattering of the radiation is increased. Due to this,
the substrate can be used as amplitude mask itself and
an individual geometry can be transferred into a fused
silica substrate. This was done using different
numbers of laser pulses. We could show that the
structure depth depends linear on the number of
pulses until 20 laser pulses. For more than 20 pulses
the depth of the structures does not increase further.
Moreover, the structure depth is limited and a
maximum aspect ratio of 2:1 can be reached. This
represents a limit in feature size range regarding to
the target modulation depth. Furthermore, it could be
shown that the FG work as expected. The diffraction
image shows diffraction orders up to the ยฑ 2
nd
order.
The asymmetric distribution of intensity is a result
from the asymmetric slopes of the grating bars. The
reason for this is a slightly misalignment between
image plain and surface of the work piece, which
easily can be corrected. But potentially this could also
be used to generate blazed FG. In general, we could
show that the generation of FGโs work well and the
optical function satisfy our expectations. To improve
this, the generation of blazed FG is the next goal of
our investigations. An easy and flexible fabrication
method for blazed FGโs could push forward the OAM
multiplexing method due to new possibilities in
production of OAM multiplexing hardware.
REFERENCES
Richardson, D. J. (2010). Filling the Light Pipe. In: Science,
330 (6002), pp. 327-328.
Xie, Z.; Gao, S.; Lei, T.; Feng, S.; Zhang, Y.; Li, F.; Zhang,
J.; Li, Z.; Yuan, X. (2018). Integrated (de)multiplexer
for orbital angular momentum fiber communication. In:
Photonics Research, 6(7), pp. 743-749.
Bozinivic, N.; Yue, Y.; Ren, Y.; Tur, M.; Kristensen, P.;
Huang, H.; Willner, A.E.; Ramachandran, S. (2013).
Terrabit-Scale Orbital Angular Momentum Mode
Division Multiplexing in Fibers. In: Science,
340(6140), pp. 1545-1548.
Yao, A.M.; Padgett, M.J. (2011). Orbital Angular
Momentum: origins, behaviour and applications. In:
Advances in Optics and Photonics, 3, pp. 161-204.
Mair A.; Vaziri, A.; Weihs, G.; Zeilinger, A. (2001).
Entanglement of the orbital angular momentum states
of photons. In: Nature, 412, pp. 313-316.
Fickler, R.; Lapkiewicz, R.; Plick, W. N.; Krenn, M.;
Schaeff, C.; Ramelow, S.; Zeilinger, A.
(2012). Quantum Entanglement of High Angular
Momenta. Science, 338(6107), 640โ643. doi:10.1126/
science.1227193
Fickler, Robert; Krenn, Mario; Zeilinger, Anton
(2018). Mit Lichtschrauben ans Quantenlimit. Physik
in unserer Zeit, 49(1), โ. doi:10.1002/piuz.201801494
Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.;
Woerdman, J.P. (1992). Orbital angular momentum of
light and the transformation of Laguerre-Gaussian laser
modes. In: Physical Review A, 45(11), pp. 8185-8189.
Allen, L.; Padget, M. (2011). The Orbital angular
momentum of light. In Twisted Photons, WILEY-VCH
Verlag GmbH, pp. 1-12, Weinheim.
Marrucci, L.; Manzo, C.; Paparo, D. (2006). Optical Spin-
to-Orbital Angular Momentum Conversion in
Inhomogeneous Anisotropic Media. Physical Review
Letters, 96(16), 163905 doi:10.1103/PhysRevLett.
96.163905
Karimi, Ebrahim; Piccirillo, Bruno; Nagali, Eleonora;
Marrucci, Lorenzo; Santamato, Enrico
(2009). Efficient generation and sorting of orbital
angular momentum eigenmodes of light by thermally
tuned q-plates. Applied Physics Letters, 94(23),
231124โ. doi:10.1063/1.3154549
Pfeifer, M.; Weissmantel, S.; Reisse, G. 2013. Direct laser
fabrication of blaze gratings in fused silica. In: Applied
Physics A, 112(1), pp. 61-64.
Pfeifer, M.; Jahn, F.; Kratsch, A.; Steiger, B.; Weissmantel,
S. 2014. F2-Laser Microfabrication of Diffractive
Optical Elements. In: Proceedings of 2nd International
Conference on Photonics, Optics and Laser
Technology, pp. 91-96.
Pfeifer, M.; Bรผttner, S.; Zhang, R.; Serbay, M.;
Weiรmantel, S. (2017). F2-Lasermikrostrukturierung
von Mikro-Fresnel-Linsen, In: Scientific Reports,
10. Mittweidaer Lasertagung, (2), pp. 127-130.
Bรผttner, S.; Pfeifer, M.; Weissmantel, S. (2019).
Manufacturing of Cylindrical Micro Lenses and Micro