Cai, X., Liu, X., An, M., and Han, G. (2021). Vision-based
fall detection using dense block with multi-channel
convolutional fusion strategy. IEEE Access, 9:18318–
18325.
Chang, W.-J., Hsu, C.-H., and Chen, L.-B. (2021). A pose
estimation-based fall detection methodology using ar-
tificial intelligence edge computing. IEEE Access,
9:129965–129976.
Chen, G. and Duan, X. (2021). Vision-based elderly fall
detection algorithm for mobile robot. In 2021 IEEE
4th International Conference on Electronics Technol-
ogy (ICET), pages 1197–1202. IEEE.
Chhetri, S., Alsadoon, A., Al-Dala’in, T., Prasad, P.,
Rashid, T. A., and Maag, A. (2021a). Deep learn-
ing for vision-based fall detection system: Enhanced
optical dynamic flow. Computational Intelligence,
37(1):578–595.
Chhetri, S., Alsadoon, A., Al-Dala’in, T., Prasad, P.,
Rashid, T. A., and Maag, A. (2021b). Deep learn-
ing for vision-based fall detection system: Enhanced
optical dynamic flow. Computational Intelligence,
37(1):578–595.
Dentamaro, V., Impedovo, D., and Pirlo, G. (2021). Fall de-
tection by human pose estimation and kinematic the-
ory. In 2020 25th International Conference on Pattern
Recognition (ICPR), pages 2328–2335. IEEE.
Galv
˜
ao, Y. M., Portela, L., Ferreira, J., Barros, P., Fagun-
des, O. A. D. A., and Fernandes, B. J. (2021). A
framework for anomaly identification applied on fall
detection. IEEE Access, 9:77264–77274.
Guan, Z., Li, S., Cheng, Y., Man, C., Mao, W., Wong, N.,
and Yu, H. (2021). A video-based fall detection net-
work by spatio-temporal joint-point model on edge
devices. In 2021 Design, Automation & Test in Eu-
rope Conference & Exhibition (DATE), pages 422–
427. IEEE.
Kang, Y., Kang, H., and Kim, J. (2021a). Fall detection
method based on pose estimation using gru. In Inter-
national Conference on Software Engineering, Artifi-
cial Intelligence, Networking and Parallel/Distributed
Computing, pages 169–179. Springer.
Kang, Y. K., Kang, H. Y., and Weon, D. S. (2021b). Hu-
man skeleton keypoints based fall detection using gru.
Journal of the Korea Academia-Industrial Coopera-
tion Society, 22(2):127–133.
Keskes, O. and Noumeir, R. (2021). Vision-based fall de-
tection using st-gcn. IEEE Access, 9:28224–28236.
Leite, G. V., da Silva, G. P., and Pedrini, H. (2021). Three-
stream convolutional neural network for human fall
detection. In Deep Learning Applications, Volume 2,
pages 49–80. Springer.
Lin, C.-B., Dong, Z., Kuan, W.-K., and Huang, Y.-F.
(2020). A framework for fall detection based on open-
pose skeleton and lstm/gru models. Applied Sciences,
11(1):329.
Liu, C., Lv, J., Zhao, X., Li, Z., Yan, Z., and Shi, X.
(2021). A novel key point trajectory model for fall
detection from rgb-d videos. In 2021 IEEE 24th Inter-
national Conference on Computer Supported Coop-
erative Work in Design (CSCWD), pages 1021–1026.
IEEE.
Mart
´
ınez-Villase
˜
nor, L., Ponce, H., Brieva, J., Moya-Albor,
E., N
´
u
˜
nez-Mart
´
ınez, J., and Pe
˜
nafort-Asturiano, C.
(2019a). Up-fall detection dataset: A multimodal ap-
proach. Sensors, 19(9):1988.
Mart
´
ınez-Villase
˜
nor, L., Ponce, H., Brieva, J., Moya-Albor,
E., N
´
u
˜
nez-Mart
´
ınez, J., and Pe
˜
nafort-Asturiano, C.
(2019b). Up-fall detection dataset: A multimodal ap-
proach. Sensors, 19(9):1988.
Nguyen, V. D., Pham, P. N., Nguyen, X. B., Tran, T. M., and
Nguyen, M. Q. (2021). Incorporation of panoramic
view in fall detection using omnidirectional camera.
In The International Conference on Intelligent Sys-
tems & Networks, pages 313–318. Springer.
Organization, W. H., Ageing, W. H. O., and Unit, L. C.
(2008). WHO global report on falls prevention in
older age. World Health Organization.
Ramirez, H., Velastin, S. A., Fabregas, E., Meza, I., Makris,
D., and Farias, G. (2021a). Fall detection using human
skeleton features.
Ramirez, H., Velastin, S. A., Meza, I., Fabregas, E., Makris,
D., and Farias, G. (2021b). Fall detection and activ-
ity recognition using human skeleton features. IEEE
Access, 9:33532–33542.
Sultana, A., Deb, K., Dhar, P. K., and Koshiba, T. (2021).
Classification of indoor human fall events using deep
learning. Entropy, 23(3):328.
Tran, T.-H., Nguyen, D. T., and Nguyen, T. P. (2021). Hu-
man posture classification from multiple viewpoints
and application for fall detection. In 2020 IEEE
Eighth International Conference on Communications
and Electronics (ICCE), pages 262–267. IEEE.
Wang, K., Li, X., Yang, J., Wu, J., and Li, R. (2021).
Temporal action detection based on two-stream you
only look once network for elderly care service robot.
International Journal of Advanced Robotic Systems,
18(4):17298814211038342.
Yin, J., Han, J., Xie, R., Wang, C., Duan, X., Rong, Y.,
Zeng, X., and Tao, J. (2021a). Mc-lstm: Real-time 3d
human action detection system for intelligent health-
care applications. IEEE Transactions on Biomedical
Circuits and Systems, 15(2):259–269.
Yin, J., Han, J., Xie, R., Wang, C., Duan, X., Rong, Y.,
Zeng, X., and Tao, J. (2021b). Mc-lstm: Real-time 3d
human action detection system for intelligent health-
care applications. IEEE Transactions on Biomedical
Circuits and Systems, 15(2):259–269.
Zhu, N., Zhao, G., Zhang, X., and Jin, Z. (2021). Falling
motion detection algorithm based on deep learning.
IET Image Processing.
VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications
598