Brickell, J. and Shmatikov, V. (2005). Privacy-preserving
graph algorithms in the semi-honest model. In Inter-
national Conference on the Theory and Application of
Cryptology and Information Security, pages 236–252.
Springer.
Buluc¸, A. and Madduri, K. (2011). Parallel breadth-first
search on distributed memory systems. In Proceed-
ings of 2011 International Conference for High Per-
formance Computing, Networking, Storage and Anal-
ysis, pages 1–12.
Canetti, R. (2000). Security and composition of multiparty
cryptographic protocols. Journal of CRYPTOLOGY,
13(1):143–202.
Canetti, R. (2001). Universally composable security: A new
paradigm for cryptographic protocols. In Proceedings
42nd IEEE Symposium on Foundations of Computer
Science, pages 136–145. IEEE.
Cohen, R., Coretti, S., Garay, J., and Zikas, V.
(2017). Round-preserving parallel composition of
probabilistic-termination cryptographic protocols. In
44th International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2017). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.
Damg
˚
ard, I., Geisler, M., Krøigaard, M., and Nielsen, J. B.
(2009). Asynchronous multiparty computation: The-
ory and implementation. In International workshop
on public key cryptography, pages 160–179. Springer.
Damg
˚
ard, I. and Nielsen, J. B. (2003). Universally com-
posable efficient multiparty computation from thresh-
old homomorphic encryption. In Annual International
Cryptology Conference, pages 247–264. Springer.
Demmler, D., Schneider, T., and Zohner, M. (2015). Aby-
a framework for efficient mixed-protocol secure two-
party computation. In NDSS.
Dijkstra, E. W. et al. (1959). A note on two problems
in connexion with graphs. Numerische mathematik,
1(1):269–271.
Fakcharoenphol, J. and Rao, S. (2006). Planar graphs, nega-
tive weight edges, shortest paths, and near linear time.
Journal of Computer and System Sciences, 72(5):868–
889.
Floyd, R. W. (1962). Algorithm 97: shortest path. Commu-
nications of the ACM, 5(6):345.
Goldberg, A. V. (1984). Finding a maximum density sub-
graph. University of California Berkeley.
Henecka, W., K
¨
ogl, S., Sadeghi, A.-R., Schneider, T., and
Wehrenberg, I. (2010). Tasty: tool for automating se-
cure two-party computations. In Proceedings of the
17th ACM conference on Computer and communica-
tions security, pages 451–462.
Henzinger, M. R., Klein, P., Rao, S., and Subramanian,
S. (1997). Faster shortest-path algorithms for pla-
nar graphs. journal of computer and system sciences,
55(1):3–23.
Johnson, D. B. (1977). Efficient algorithms for shortest
paths in sparse networks. Journal of the ACM (JACM),
24(1):1–13.
Katz, J. and Koo, C.-Y. (2007). Round-efficient secure
computation in point-to-point networks. In Annual
International Conference on the Theory and Appli-
cations of Cryptographic Techniques, pages 311–328.
Springer.
Katz, J., Ostrovsky, R., and Smith, A. (2003). Round ef-
ficiency of multi-party computation with a dishonest
majority. In International Conference on the Theory
and Applications of Cryptographic Techniques, pages
578–595. Springer.
Klein, P. N., Mozes, S., and Weimann, O. (2010). Shortest
paths in directed planar graphs with negative lengths:
A linear-space o (n log2 n)-time algorithm. ACM
Transactions on Algorithms (TALG), 6(2):1–18.
Laud, P. (2015a). Parallel oblivious array access for secure
multiparty computation and privacy-preserving mini-
mum spanning trees. Proc. Priv. Enhancing Technol.,
2015(2):188–205.
Laud, P. (2015b). Stateful abstractions of secure multi-
party computation. In Laud, P. and Kamm, L., edi-
tors, Applications of Secure Multiparty Computation,
volume 13 of Cryptology and Information Security Se-
ries, pages 26–42. IOS Press.
Laur, S. and Pullonen-Raudvere, P. (2021). Foundations
of programmable secure computation. Cryptography,
5(3):22.
Liu, C., Wang, X. S., Nayak, K., Huang, Y., and Shi, E.
(2015). Oblivm: A programming framework for se-
cure computation. In 2015 IEEE Symposium on Secu-
rity and Privacy, pages 359–376. IEEE.
Meyer, U. and Sanders, P. (2003). δ-stepping: a paralleliz-
able shortest path algorithm. Journal of Algorithms,
49(1):114–152.
Mozes, S. and Wulff-Nilsen, C. (2010). Shortest paths in
planar graphs with real lengths in o (nlog 2 n/loglogn)
time. In European Symposium on Algorithms, pages
206–217. Springer.
Murphy, R. C., Wheeler, K. B., Barrett, B. W., and Ang,
J. A. (2010). Introducing the graph 500. Cray Users
Group (CUG), 19:45–74.
Rao, C. K. and Singh, K. (2020). Securely solving pri-
vacy preserving minimum spanning tree algorithms in
semi-honest model. International Journal of Ad Hoc
and Ubiquitous Computing, 34(1):1–10.
Yao, A. C. (1982). Protocols for secure computations. In
23rd annual symposium on foundations of computer
science (sfcs 1982), pages 160–164. IEEE.
Yoo, A., Chow, E., Henderson, K., McLendon, W., Hen-
drickson, B., and Catalyurek, U. (2005). A scal-
able distributed parallel breadth-first search algorithm
on bluegene/l. In SC’05: Proceedings of the 2005
ACM/IEEE Conference on Supercomputing, pages
25–25. IEEE.
Privacy-preserving Parallel Computation of Shortest Path Algorithms with Low Round Complexity
47