
Identifying Insecure Features in Android Applications
using Model Checking

Fabio Martinelli1, Francesco Mercaldo1 and Vittoria Nardone2

1Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
2Department of Engineering, University of Sannio, Benevento, Italy

Keywords: Android, Model Checking, Security.

Abstract: Nowadays Android is the most widespread operating system. This is the reason why malware writers target
it. Both researchers and commercial antimalware provide several solutions to fix and detect this phenome-
non. They analyze one single application per time using combinations of static, dynamic and behavior based
techniques. However, one of the last new threats is the collusion attack. In order to perpetrate this attack
the malicious behaviour is divided between two or more applications: collusion refers to multiple applicati-
ons that accomplish their fragment of malicious behaviour and then communicate using the Inter Component
Communication mechanism provided by Android platform. Basically the colluded applications intentionally
put in view private and sensitive information. The aim of this paper is to investigate whether legitimate and
malware applications share private data. One way to exchange data between different applications in Android
environment is through Shared Preferences. In this preliminary work we investigate whether an application
transfers data using Shared Preferences with public visibility.

1 INTRODUCTION

As reported in the IDC report1, Android continues
to be the most dominant platform and its popularity
will continue to grow. Due to this large popularity,
malware writers are developing more aggressive pa-
radigms of attack.

The new trend in this area is represented by the so-
called colluding attack: the malicious action is split-
ted in several applications. In this way current anti-
malware technologies, that analyze an application in
order to discover harmful action as a single entity, are
not able to identify the malicious payload.

In collusion attacks, a malicious operation is per-
formed through multiple applications: it is divided
into multiple parts and distributed among a set of col-
luding applications. In order to achieve their malici-
ous aims, the applications communicate trough Inter
Component Communication (ICC) mechanism. Each
application avoids suspicion by requesting the mini-
mum permissions needed for its role. For example,
when two applications collude, the first application
might read sensitive data and transmit them to the se-
cond application, which transmits them to the outside

1https://www.idc.com/getdoc.jsp?
containerId=prUS41425416

world. Analyzed individually, the applications would
be considered benign because there is no direct path
from sensitive data to their transmission.

Different research works ((Xu et al., 2016; Li
et al., 2014; Enck et al., 2014; Wei et al., 2014)) inves-
tigate information leaks using inter-component data
flow analysis. However, these security techniques are
focused to detect vulnerabilities in a single applica-
tion, but fail to identify vulnerabilities involving mul-
tiple applications.

Recently, academic researches have extended flow
analysis to include multiple applications using ICC
channels in order to communicate with each other (Li
et al., 2015b; Bhandari et al., 2017).

Conversely, this paper wants to investigate whet-
her legitimate and malware applications intentionally
put in view some data. In fact, in colluding attack the
applications intentionally exhibit private data. Thus,
this work not performs data flow analysis but it inves-
tigates whether a data vulnerability is exposed using
model checking.

The proposed method aims to identify Shared Pre-
ferences feature with a public data, since intentionally
sharing some data is the first step to mark an applica-
tion as good candidate in order to exfiltrate data.

The remainder of this paper is organized as fol-

Martinelli F., Mercaldo F. and Nardone V.
Identifying Insecure Features in Android Applications using Model Checking.
DOI: 10.5220/0006758105890596
In Proceedings of the 4th International Conference on Information Systems Security and Privacy (ICISSP 2018), pages 589-596
ISBN: 978-989-758-282-0
Copyright c© 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

lows. In Section 2 the state of the art related to collu-
ding attack research effort is analyzed. Section 3 pro-
vides the background knowledge required to under-
stand the working environment. Section 4 motivates
the aim of the work through an illustrative example.
In Section 5 the workflow of the proposed methodo-
logy is depicted. Section 6 shows the results obtained
during the evaluation and Section 7 discusses some
aspect of the work and investigates for further directi-
ons. Finally, Section 8 concludes the work.

2 RELATED WORK

The following section presents different experimen-
tal approaches for the detection of intra and inter-
application communication vulnerabilities.

Authors in (Liu et al., 2017) present MR-Droid
a MapReduce based framework able to detect inter-
app communication threats. Is is specialized in intent
hijacking, intent spoofing and collusion. MR-Droid
builds a large-scale ICC graph extracting data-flow
features between multiple communicating apps. This
kind of approach is scalable and accurate. However,
it is able to only handle intent based communications.
Another limitation is related to detection of privacy
leakage across two apps.

Bhandari et al. in (Bhandari et al., 2017) present
a model-checking based approach to detect inter-app
collusion. The proposed approach is composed by
four steps. The first step aims to collect information
related to ICC sources and sinks. The second step car-
ries out data-flow analysis in order to map sensitive
information provided by sensitive API call. The third
step aims to generate for each app a PROMELA mo-
del. In the fourth step, model checking is applied in
order to verify the collusion detection property on the
generated models. Whether the compositional model
of apps satisfy the property, then that set of apps is not
a colluding set candidate.

Filiol and Irolla in (Filiol,) propose three diffe-
rent tools. The first one, called Tarentula, is a web
crawler collecting mobile applications. The second
one, called Egide, is a static malware detector. Fi-
nally Panoptes, the third one, is an advanced dynamic
tool analyzing network communications. It can moni-
tor all communications based on HTTP, HTTPS, POP,
IMAP, SMTP between the application and the Inter-
net. It especially addresses the issue of data privacy
regarding banking apps and Facebook app. (Filiol,)
analyzes only the network traffic, instead this work
aims to investigate the feasible exposure of some data
using the Android communication channels.

Authors in (Asavoae et al., 2016) propose two

approaches able to identify collusion apps candida-
tes. The first one is a rule based approach developed
in Prolog. The second one is a statistical based ap-
proach. The rule based approach use some features
(e.g. permissions, communication channels) to iden-
tify colluding apps. In the statistical approach a pro-
babilistic model is defined. Additionally the authors
say that also model-checking is a feasible approach to
detect collusion in Android apps.

Authors in (Li et al., 2015b) propose IccTA which
is a static taint analyzer to detect privacy leaks be-
tween components in Android applications. Com-
bining it with APKCombiner (Li et al., 2015a),
IccTA can also detect inter-app leakage paths. IccTA
goes beyond state-of-the-art approaches by suppor-
ting inter-component detection. IccTA improves the
precision of the analysis spreading context informa-
tion between components.

In (Bagheri et al., 2015) Bagheri et al. present CO-
VERT, a tool for compositional analysis of Android
inter-app vulnerabilities. COVERT statically analy-
zes the source code of each application, then it ex-
tracts relevant security specifications in a format suit-
able for formal verification. COVERT uses model
checker tool in order to verify whether the formal mo-
del defined is affected by collusion.

Conversely from the above approaches, this work
aim to investigate whether an application defines pu-
blic communication channels. In particular, this paper
investigates if into applications there are Shared Pre-
ferences with a world readable visibility. As specified
in the Android developers guide, using a Shared Pre-
ferences with this kind of visibility is very dangerous.
In these kind of cases every applications have access
to the Shared Preferences information.

3 PRELIMINARIES

This section aims to introduce some preliminary con-
cepts related to the android environment and model
checking technique.

3.1 Android Overview

Linux Kernel is the base of the Android Operating
system. In Android system the applications run in
an isolated sandbox. In order to protect the device
the Android operating system provides several secu-
rity features: application signing, application-defined
and user-granted permissions and secure interprocess
communication. Permissions are used to regulate the
access to sensitive resources, such as users’ personal
information or sensor data (e.g., camera, GPS, etc.).

Android applications are developed in Java. They
are composed by four different components: Activi-
ties, Services, Broadcast Receivers and Content Pro-
viders. An application may be build using many dif-
ferent components and any their combination. In the
following, these components are briefly described:

An Activity usually allows the interaction with the
physical user. It includes a set of GUI components
representing the visible interface to the user.

A Service deals of background computations
which keep on even when the application is not in fo-
cus. It also provides interfaces for Inter Component
Communication exposing some of its functionality to
other applications.

Broadcast Receivers allow to receive broadcast
messages both from the other application or the sy-
stem. It implements a sort of publish-subscribe design
pattern. Usually, when an event occurs a broadcast is
sent by either the system or an application. In order
to receive specific broadcasts an application can be
subscribed to it.

Content Provider provides a mechanism able to
sharing data with other applications. It shares data as
relational database-like model.

3.1.1 Inter Component Communication (ICC)

Android framework provides some channel for inter
component communication. The main Android com-
munication channels are the following:

• Intent allows to application components to invoke
other components of the same or other applicati-
ons. Using Bundles it is also possible to pass data
between different components. An Intent is the
preferred messaging object for asynchronous ICC
in Android. It contains the following primary in-
formation: component name, action string, cate-
gory and data. These information are optional.
Based on presence/absence of component name
(i.e. the destination) there are two type of intent:
Explicit and Implicit Intent. In the first case the
destination is specified in the second case no des-
tination is specified.

• Content Provider is like relational databases. It
stores structured data and can be used to transfer
data across components of same or different apps.
The data can be accessed and modified using Con-
tentResolver objects. Best practice is to attach
read and write permissions to the content provi-
der, in order to protect it from data exposure.

• External Storage is the storage space external
to an app. It is placed in the SD card. Ex-
ternal storage can be accessed using the follo-

wing permissions: READ EXTERNAL STORAGE and
WRITE EXTERNAL STORAGE.

• Shared Preferences allow applications to store
key-value pairs of data. It is an operating system
feature and it is usually used to store preferences
information. Applications can access to key-value
pairs data according to the mode visibility defined
for the preferences. This paper aim to focus on
mode visibility used to define a Shared Preferen-
ces. Since using a public visibility could be ex-
pose an application to a data exfiltration. To more
detail see Section 4.

3.2 Model Checking

Complex systems verification and specification is
usually performed using Formal Methods. Model
Checking belongs to formal techniques and requires
three main phases:
• modeling the system with a precise notation;

• specifying the system behavioural properties with
a precise notation;

• verifying the properties on the system using a mo-
del checker tool.

While model checking was originally developed to
verify the correctness of systems, recently it has been
also proposed in other fields such as clone detection
(Santone, 2011), biology (De Ruvo et al., 2015), se-
cure information flow (De Francesco et al., 2003), and
mobile computing (Anastasi et al., 2001). In the last
years, model checking has been successfully applied
also in the security field, as explained in the following
works: (Battista et al., 2016) and (Mercaldo et al.,
2016). The main aim of these works is to detect and
identify Android malware families.

In the following the three phases of model
checking are detailed.
Modeling the System
The system behavior is defined using an automaton. It
has a set of labeled edges and a set of nodes. The sta-
tes of the system are represented by the nodes while
the transitions from a state to another state (precisely
the next state) are represented by the edges. Every ed-
ges have a label meaning that the system can switch
from a state s to a state s′ performing an action a. This
action a is the label of the edge. The automaton’ root
is the initial state of the system and usually a transi-
tion is depicted as follow: s a−→s′.

Processes are an algebraical helpful representa-
tion to define the automaton. Thus, the precise nota-
tion used to describe complex systems is usually the
process algebra. The methodology of this work uses
Milner’s Calculus of Communicating Systems (CCS)

Figure 1: Vulnerable Applications: a Simple Example.

(Milner, 1989) as process algebra. In CCS process
algebra the states of the system are modeled through
processes and the transitions are modeled using the
actions. The reader can refer to (Bruns, 1997; Milner,
1989) for more details on CCS.
Specifying the Properties
The behavioural properties of the system can be de-
fined using a temporal logic. Usually properties are
sequences of actions that a system should perform in
order to accomplish a particular purpose. In order to
formally verify this kind of properties temporal logic
constructs are used. General examples of properties
can be the following: verifying whether a particular
event will eventually occur or a property is verified
in every state. This work uses the mu-calculus lo-
gic(Stirling, 1989).
Formal Verification Environment: Model Checker
Tool
The last phase of Model Checking technique is the
verification of the specified properties (temporal lo-
gic formulae) on the system (labeled transition sy-
stem). To accomplish this aim a model checker tool
is usually used. It takes as input both the modeled
system and the properties. The model checker provi-
des a binary output: whether the system verifies the
property it return TRUE or FALSE otherwise. The tool
performs an exhaustive state space search is guaran-
teed to terminate since the model is finite. In this work
the Concurrency Workbench of New Century (CWB-
NC) (Cleaveland and Sims, 1996) is used as formal
verification environment.

4 MOTIVATING EXAMPLE

Figure 1 shows a pattern example of inter applications
vulnerabilities. This example point out the privilege
escalation that motivates this work. The figure shows
a malicious application App1 sharing a public Shared
Preferences containing the contact list of a user. App2
takes this list, without the READ CONTACTS permis-
sion, and sends it, through Internet, to a remote ser-
ver. This is a simple example of a vulnerability using
Inter Component Communication (ICC) among An-

droid apps.
As the figure shown, the privilege escalation is ex-

ploited since the Shared Preferences visibility is pu-
blic. For this reason, our work aims to investigate
in Android environment whether legitimate and mal-
ware applications employ Shared Preferences with
public visibility. Thus, this work searches the inse-
cure feature related to a public Shared Preferences.

5 METHODOLOGY

Figure 2 shows the methodology workflow. This mo-
del checking based methodology has two main steps:

• building the model starting from Bytecode in-
structions of an Android application;

• specifying the properties checking insecure featu-
res related to Android Shared Preferences.

Formal Model

In order to build the formal model of an Android ap-
plication this methodology aims, using a reverse engi-
neering process, to obtain the app executable files, i.e.
the .class files. Starting from the apk file dex2jar2

tool is used to obtain the Java Archive file (jar) from
the application Dalvik Executable file (dex). The exe-
cutable files are extracted from the from the jar file
through the jar -xvf command provided by the Java
Development Kit. At the end of this reverse engi-
neering process the classes of the Android application
are obtained. Afterwards, Apache Commons Byte-
code Engineering Library (BCEL)3 is used to parse
the Bytecode. Finally, every Bytecode instruction
is translated in an algebraical process. In particular,
as state before, this methodology uses CCS language
(Calculus of Communicating Systems of Milner (Mil-
ner, 1989)). Using a Java Bytecode-to-CCS trans-
formation function every Java Bytecode instruction
is translated in a CCS process. This representation
allows to simulate the normal flow of the instructi-
ons. A simple example of this transformation function
is the following: the if statement is translated as a
non-deterministic choice. In this case the system can
evolve from a process s to two different processes
s′ and s′′, corresponding to the two alternative paths
(true/false) of the classical if statement.

The formal model construction is an automatic
process in this methodology. The output of this first
step is the formal model of the application.

2https://sourceforge.net/projects/dex2jar/
3http://commons.apache.org/bcel/

Figure 2: Methodology Workflow.

Behavioural Properties

The aim of this second step is to investigate whet-
her an application is developed using insecure feature
which may cause security issues in mobile applicati-
ons. In this methodology the defined behavioural pro-
perty investigates whether a Shared Preferences is de-
clared as: MODE WORLD READABLE. Usually, this mode
is indicated through the (0x00000001) constant value.
In Bytecode this value is translated with the iconst 1
opcode. In order to better understand this kind of in-
secure feature, an example of Shared Preferences de-
claration is reported in Listing 1.

As listing 1 shown, the getSharedPreferences
method has two arguments: the name of the prefe-
rences file and the operating mode. If a preferences
file by the specified name does not exist, it will
be created editing and committing the changes.
The operating mode can assume the following
values: MODE PRIVATE, MODE WORLD READABLE,
MODE WORLD WRITEABLE or MODE MULTI PROCESS.
Using the MODE PRIVATE mode the created file can
only be accessed by the calling application. The other
cases allow all other applications to have access to
the created file. Creating files using these ways can
imply security issues, and may generate insecurity
applications. For this reason this paper aims to
investigate whether an application uses public Shared
Preferences which are visible to all other applications
installed on mobile devices.

Table 1 shows the logic rule ϕ related to the above
explained unsafe behaviour.

The mu-calculus logic, (Stirling, 1989) as a bran-
ching temporal logic, is used to describe a determi-
ned behavior of the app. In this formula is used the
last fixpoint (µZ.φ) of the recursive recursive equa-
tion Z = φ. µZ binds free occurrences of Z in φ. An
occurrence of Z is free if it is not within the scope of a
binder µZ. Finally, at the end of this second step, the
temporal logic rule is specified.

Formal Verification Environment

In this approach the Concurrency Workbench of New
Century (CWB-NC) (Cleaveland and Sims, 1996) is
used as formal verification environment. The CWB-
NC model checker takes as input the formal model of
an application (written in CCS) and the temporal logic
property written in mu-calculus. The output of this
verification step is binary: true, whether the property
is verified on the model and false otherwise. For
this approach, an application is considered insecure
whether the property ϕ shown in Table 1 is verified
on the model.

It is well-known that a model checking technique
typically suffers of the state explosion problem. In
fact, it is mainly applicable to small-scale applicati-
ons, but do not scale up well. However, the state ex-
plosion problem is not a real problem when verifying
Android applications, since the produced CCS spe-
cifications do not have a large number of states and
transitions.

6 SECURITY EVALUATION

In order to evaluate this methodology, two different
dataset are used: 200 legitimate applications and 200
real world samples belonging to the Drebin project’s
dataset (Arp et al., 2014; Spreitzenbarth et al., 2013).

The legitimate applications are downloaded from
Google Play4, the Android official market. These
trusted applications have been crawled from the Goo-
gle’s official app store5 using an open-source cra-
wler6. They were downloaded by between January
2016 and April 2016. The legitimate applications of
this dataset belonging to all the different categories
available on the market.

4https://play.google.com
5https://play.google.com/store
6https://github.com/liato/android-market-api-py

1 S h a r e d P r e f e r e n c e s g e t S h a r e d P r e f e r e n c e s (S t r i n g name , i n t mode)

Listing 1: Example of SharedPreferences declaration.

Table 1: An example of logic rule.

ϕ = µX = 〈iconst 1〉 〈invokegetSharedPre f erences〉 tt∨〈−iconst 1, invokegetSharedPre f erences〉X

The malware dataset is a very well known col-
lection of malware which includes the most diffused
Android: in the evaluation we consider four diffe-
rent families with 50 samples for each one of them.
The analyzed families are the following: FakeInstal-
ler, GinMaster, Opfake and Plankton.

Table 2 shows the results achieved during the in-
vestigation related to the legitimate applications. Ta-
ble 2 is organized as follow: considering the ϕ for-
mula, # Secure Apps is the number of apps resulting
false to the formula; # Insecure Apps is the number
of apps resulting true to the formula. The last column
is the number of total applications analyzed in this
preliminary work.

As the table shown, 17 applications are classi-
fied as insecure. In fact, these applications declare
Shared Preferences with a public visibility. Cre-
ating world-readable files is very dangerous and 17
applications belonging to this dataset have done it.

Table 2: Security Evaluation on Legitimate Applications.

Family
Secure Apps # Insecure Apps # Legitimate

ϕ = FALSE ϕ = T RUE Apps
Legitimate 183 17 200

Conversely, Table 3 shows the results achieved du-
ring the investigation related to the malware samples.
Table 3 is organized as follow: each row shows the
results achieved by each family evaluating the ϕ for-
mula. As stated before, this methodology considers
as Secure Apps the samples resulting false to the for-
mula ϕ and classifies as Insecure Apps the samples
resulting true to the formula ϕ. The last column shows
the number of samples belonging to each family in-
volved in this evaluation. As the table shown, 47
malware samples are classified as insecure, this me-
ans that 47 malware samples have defined Shared
Preferences with a public visibility. The results also
highlight that only the samples belonging to Opfake
and Plankton families expose this kind of vulnerabi-
lity.

Another result is related to the comparison bet-
ween legitimate and malware applications. In par-
ticular, the tables 2 and 3 show that the number of
malware samples affected by Shared Preferences vul-

nerability (47) is greater than the number of legiti-
mate applications (17). This preliminary result seems
to indicate that legitimate applications are less vul-
nerable if compared with the malware samples, since
Shared Preferences with a public visibility are most
commonly used by malware samples.

Table 3: Security Evaluation on Malware Samples

Family
Secure Apps # Insecure Apps

Malware
ϕ = FALSE ϕ = T RUE

FakeInstaller 50 0 50
GinMaster 50 0 50
Opfake 22 28 50
Plankton 31 19 50
Total 153 47 200

7 DISCUSSION AND FUTURE
EXTENSIONS

The evaluation of the proposed method consider a re-
duced number of legitimate and malware applicati-
ons. Thus, the first improvement is related to the eva-
luation of an extended dataset. For example, as future
work a grater number of samples have to be consi-
dered in the evaluation, including also other malware
families.

Another limitation of this work is related to its abi-
lity to handle only Shared Preference vulnerability.
Other kinds of vulnerability can be detected in the
future, e.g. intent based ICC communications. Usu-
ally, Intents are the most common components used to
inter-app communication. For example, a future work
can investigate whether an intent is vulnerable, with
particular attention on the implicit intent.

Furthermore, it is also interesting to investigate
whether these kinds of vulnerability generate collu-
sion attacks. For example, for the Shared Preferences
vulnerability, a combiner can be built. This combiner
aim to link two applications, the first application that
is able to put something in a Shared Preferences and
the second one able to get to the resource. Afterwards,
some logic formulae can be used in order to verify if
information flow has occurred.

8 CONCLUSIONS

Android is the most widespread mobile operating sy-
stem. Malware writers threaten it using new types of
attacks. One of the last new threats is the collusion
attack. During this kind of attack the malicious be-
haviour is performed through multiple applications:
two or more applications collaborate in order to ac-
complish malicious aims. In collusion attacks the ap-
plications intentionally put in view some private data.
This paper aims to investigate whether legitimate and
malware applications show public user data. This is a
kind of vulnerability detected by the methodology de-
signed in this work using a dataset composed by 200
legitimate applications downloaded from the Android
official store and 200 malware samples belonging to
the Drebin dataset. The results show that some legi-
timate applications intentionally expose public data.
Instead, Opfake and Plankton malware samples lar-
gely expose the public Shared Preferences vulnerabi-
lity.

ACKNOWLEDGEMENTS

This work has been partially supported by H2020
EU-funded projects NeCS and C3ISP and EIT-Digital
Project HII.

REFERENCES

Anastasi, G., Bartoli, A., De Francesco, N., and Santone, A.
(2001). Efficient verification of a multicast protocol
for mobile computing. Computer Journal, 44(1):21–
30. cited By 12.

Arp, D., Spreitzenbarth, M., Huebner, M., Gascon, H., and
Rieck, K. (2014). Drebin: Efficient and explainable
detection of android malware in your pocket. In Pro-
ceedings of 21th Annual Network and Distributed Sy-
stem Security Symposium (NDSS).

Asavoae, I. M., Blasco, J., Chen, T. M., Kalutarage, H. K.,
Muttik, I., Nguyen, H. N., Roggenbach, M., and
Shaikh, S. A. (2016). Towards automated android app
collusion detection. arXiv preprint arXiv:1603.02308.

Bagheri, H., Sadeghi, A., Garcia, J., and Malek, S. (2015).
Covert: Compositional analysis of android inter-app
permission leakage. IEEE Transactions on Software
Engineering, 41:866–886.

Battista, P., Mercaldo, F., Nardone, V., Santone, A., and
Visaggio, C. A. (2016). Identification of android mal-
ware families with model checking. In Proceedings of
the 2nd International Conference on Information Sys-
tems Security and Privacy - Volume 1: ICISSP,, pages
542–547.

Bhandari, S., Herbreteau, F., Laxmi, V., Zemmari, A.,
Roop, P. S., and Gaur, M. S. (2017). Poster: Detecting
inter-app information leakage paths. In Proceedings of
the 2017 ACM on Asia Conference on Computer and
Communications Security, pages 908–910. ACM.

Bruns, G. (1997). Distributed Systems Analysis with CCS.
Prentice-Hall.

Cleaveland, R. and Sims, S. (1996). The ncsu concurrency
workbench. In CAV. Springer.

De Francesco, N., Santone, A., and Tesei, L. (2003). Ab-
stract interpretation and model checking for checking
secure information flow in concurrent systems. Fun-
damenta Informaticae, 54(2-3):195–211. cited By 12.

De Ruvo, G., Nardone, V., Santone, A., Ceccarelli, M.,
and Cerulo, L. (2015). Infer gene regulatory net-
works from time series data with probabilistic model
checking. pages 26–32. cited By 7.

Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.-G.,
Cox, L. P., Jung, J., McDaniel, P., and Sheth, A. N.
(2014). Taintdroid: an information-flow tracking sy-
stem for realtime privacy monitoring on smartphones.
ACM Transactions on Computer Systems (TOCS),
32(2):5.

Filiol, E. i irolla, p.(2015).(in) security of mobile banking...
and of other mobile apps*.

Li, L., Bartel, A., Bissyandé, T. F., Klein, J., and Le Traon,
Y. (2015a). Apkcombiner: Combining multiple an-
droid apps to support inter-app analysis. In IFIP Inter-
national Information Security Conference, pages 513–
527. Springer.

Li, L., Bartel, A., Bissyandé, T. F., Klein, J., Le Traon,
Y., Arzt, S., Rasthofer, S., Bodden, E., Octeau, D.,
and McDaniel, P. (2015b). Iccta: Detecting inter-
component privacy leaks in android apps. In Procee-
dings of the 37th International Conference on Soft-
ware Engineering - Volume 1, ICSE ’15, pages 280–
291, Piscataway, NJ, USA. IEEE Press.

Li, L., Bartel, A., Klein, J., and Le Traon, Y. (2014). Auto-
matically exploiting potential component leaks in an-
droid applications. In 2014 IEEE 13th International
Conference on Trust, Security and Privacy in Compu-
ting and Communications, pages 388–397. IEEE.

Liu, F., Cai, H., Wang, G., Yao, D. D., Elish, K. O., and
Ryder, B. G. (2017). Mr-droid: A scalable and priori-
tized analysis of inter-app communication risks. Proc.
of MoST.

Mercaldo, F., Nardone, V., Santone, A., and Visaggio, C. A.
(2016). Download malware? no, thanks: How formal
methods can block update attacks. In Proceedings of
the 4th FME Workshop on Formal Methods in Soft-
ware Engineering, FormaliSE ’16, pages 22–28, New
York, NY, USA. ACM.

Milner, R. (1989). Communication and concurrency. PHI
Series in computer science. Prentice Hall.

Santone, A. (2011). Clone detection through process alge-
bras and java bytecode. pages 73–74. cited By 10.

Spreitzenbarth, M., Echtler, F., Schreck, T., Freling, F. C.,
and Hoffmann, J. (2013). Mobilesandbox: Looking
deeper into android applications. In 28th International
ACM Symposium on Applied Computing (SAC).

Stirling, C. (1989). An introduction to modal and temporal
logics for ccs. In Concurrency: Theory, Language,
And Architecture, pages 2–20.

Wei, F., Roy, S., Ou, X., et al. (2014). Amandroid: A pre-
cise and general inter-component data flow analysis
framework for security vetting of android apps. In
Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, pages
1329–1341. ACM.

Xu, K., Li, Y., and Deng, R. H. (2016). Iccdetec-
tor: Icc-based malware detection on android. IEEE
Transactions on Information Forensics and Security,
11(6):1252–1264.

