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Abstract: In this paper we present an analysis on the usage of Deep Neural Networks for extreme multi-label and multi-
class text classification. We will consider two network models: the first one is formed by a word embeddings
(WEs) stage followed by two dense layers, hereinafter Dense, and a second model with a convolution stage
between the WEs and the dense layers, hereinafter CNN-Dense. We will take into account classification
problems characterized by different number of labels, ranging from an order of 10 to an order of 30,000,
showing the different performances of the neural networks varying the total label number and the average
number of labels for sample, exploiting the hierarchical structure of the label space of the dataset used for
experimental assessment. It is worth noting that multi-label classification is an harder problem if compared to
multi-class, due to the variable number of labels associated to each sample. We will even investigate on the
behaviour of the neural networks as function of the training hyperparameters, analysing the link between them
and the dataset complexity. All the result will be evaluated using the PubMed scientific articles collection as
test case.

1 INTRODUCTION

The automatic classification of the semantic content
of a media (image, text, video) has a paramount im-
portance in many tasks and in different application
domains. Usually, the classification result is one or
more labels applied to each media. Many techniques
have been already proposed in literature, ranging from
ontology-based methods (Amato et al., 2014) to ma-
chine learning systems (Su et al., 2015), or using hy-
brid approaches (Alicante et al., 2016a) integrating
ontological knowledge and machine learning. The
availability of high computational power, in conjunc-
tion with the recent advances in the field of the Deep
Learning (DL), have led the scientific community to
develop Deep Neural Network (DNN) models able
to outperform the previous state of the art systems.
Among all different media that need to be automat-
ically classified, textual documents have gained a
growing importance, due to the application of this
problem in various crucial tasks, like Information Re-
trieval, Question Answering or Natural Language Un-
derstanding. In this paper we consider the problem of
DL textual documents classification.

In literature Natural Language text classification

problem has been split in four different classes. The
first one is the binary classification, i.e. sentiment
analysis, usually applied both to short (i.e. tweets)
and long texts (reviews, news, etc.). In this case, only
one label belonging to positive or negative class must
be assigned to each sample. A more complex problem
is the multi-class classification, where the single clas-
sification label belongs to a set with more than two
elements. When the labels belong to a multi-class
domain, but differently from the previous case each
document could be tagged with a variable number of
labels, ranging from one to total classes number, this
is a multi-label classification problem. Finally, when
the latter scenario involves a very huge label set, it
can be identified as an additional class, namely the
extreme multi-label text classification (XMTC) (Liu
et al., 2017). In details, XMTC refers to the auto-
matic assignment of the most relevant subset of labels
to a text document, but differently from classic multi-
label and multi-class classification problems, where
the number of the labels is usually in the order of
ten, the peculiar aspect of XMTC is that the labels be-
long to extremely large set, in the order of thousands
or even more. This huge label space raises research
challenges, such as data sparsity and scalability. With
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the availability of Big Data, the XMTC problem has
gained a growing attention from the researchers from
Machine Learning and DL fields.

Significant advances in multi-label classification
methodologies have been made in recent years, thanks
to the development of specific machine learning
methods, such as tree induction with large-margin
partitions of the instance spaces and label-vector em-
bedding in the target space. However, Deep Learning
(DL) has not been widely explored yet for this kind of
problems. Despite the recent attention of the research
community for the identification of NN topologies for
XMTC task, the effects of different hyperparameters
settings have not still deeply analysed, even if it could
bring an improvement to the performance of each net-
work (Sutskever et al., 2013).

In this paper we present an analysis of a Deep
Neural Network performances, considering an in-
creasing number of labels, starting from a classic
multi-label problem to an XMTC problem. We also
investigate on the effects of training hyperparame-
ters (learning rate, momentum, batch size) and their
link with the label space size. We consider as case
study the PubMed papers repository, a Big Data col-
lection of medical domain scientific papers. Each pa-
per is labelled with a variable number of MeSH (Med-
ical Subject Headings), namely labels from a con-
trolled vocabulary used for indexing articles, manu-
ally assigned by human experts. Total MeSH number
is about 30,000 and all MeSHs lie in a hierarchical
tree structure. To obtain a variable label set we con-
sider each level of the hierarchical tree, obtaining in
this way five different multi-label problems, ranging
from 16 to 27,775 classes, making possible to anal-
yse the behaviour of the DNN with a simple multi-
label classification problem and with XMTC prob-
lem, in a Big Data text source. The main contribution
is the comparison of the effects in term of complex-
ity and accuracy of different Stochastic Gradient De-
scent (SGD) hyperparameters settings. The proposed
approach and the obtained results can be useful to de-
fine a baseline for the development of a fine tuned DL
XMTC system.

2 RELATED WORKS

The problem of multi-label and multi-class classifi-
cation involves many different fields. In particular,
it is a challenging problem in computer vision and
Natural Language Understanding (NLU) areas. In the
first case, DL methodologies have been successfully
applied in multi-label image classification. For ex-
ample, in (Zhu et al., 2017) the authors proposed to

exploit semantic relations between various labels of
an image to improve multi-label image classification
task. This improvement has been obtained using a
Spatial Regularization Network (SNR) that generates
attention maps for all labels and captures the under-
lying relations between them through learnable con-
volution. The regularized classification results have
been applied to a ResNet-101 (He et al., 2016) net-
work, significantly improving the baseline classifica-
tion performances.

While DL multi-class and multi-label image clas-
sification produces state of the art performances, the
same problem applied to text classification has many
still open issues. Methodologies derived from Nat-
ural Language Processing, like Latent Dirichlet Al-
location (Blei et al., 2003) have been used in text
classification ( (Zhang et al., 2017b), (Pavlinek and
Podgorelec, 2017)) with good results in term of ac-
curacy. More recently, alongside classic methodolo-
gies, various DNN-based solutions have been pro-
posed. A simple but effective approach is presented
in (Wang et al., 2015), where the authors approached
the problem of multi-label text classification applied
to keywords identification of scientific papers. They
used a Word Embeddings (WEs) swallow neural net-
work as an external knowledge base for both key-
word extraction and generation, showing promising
results. A similar approach based on WEs is de-
scribed in (Qiang et al., 2017), where an effective
model that uses WEs and Markov Random Fields to
obtain topic modelling over short texts is proposed.
In (Nam et al., 2014) a simple NN approach for large-
scale multi-label text classification tasks is proposed,
showing the effectiveness of cross entropy error func-
tion and demonstrating the usefulness of DL in this
setting. The authors proved that simple NN mod-
els equipped with advanced techniques such as Recti-
fied Linear Units, dropout, and AdaGrad outperform
non NN approaches on six large-scale textual datasets
with different characteristics.

A solution to multi-label text classification prob-
lem has been proposed even in (Hughes et al., 2017),
where it is described the use of a Deep CNN ap-
plied to sentences of clinical NL texts, in order to
sentence level classification. In this task, the use of
the proposed DNN outperforms the WEs based meth-
ods. The authors of (Yogatama et al., 2017) char-
acterized the performance of discriminative and gen-
erative Long Short Term Memory (LSTM) models
for text classification, showing that generative mod-
els substantially outperform discriminative models.
In (Yan et al., 2017) the authors proposed an inno-
vative Recurrent Neural Network (RNN), namely a
LSTM-based multi-label ranking model for document



classification, consisting of two LSTMs used respec-
tively for adaptive data representation process and
unified learning-ranking process. The first LSTM is
used to learn document representation by incorporat-
ing the document labels, while in the latter the order
of the documents labels is rearranged in accordance
with a semantic tree, in which the semantics are com-
patible with and appropriate to the sequential learn-
ing of LSTM. Connectionist Temporal Classification
is performed in rankLSTM to address the error prop-
agation for a variable number of labels in each docu-
ment. The experiments with document classification
conducted on three typical datasets reveal impressive
performance. The authors of (Schwenk et al., 2017)
explored the use of Very Deep Convolutional Neural
Networks (VDCNN) in multi-class text classification,
proving the effectiveness of their proposed method-
ology with large scale training set. In (Wang and
Tian, 2016) is analysed the use of Residual Network
(ResNet) to improve the performance of LSTM RNN
in multi-label text classification task, showing that di-
rect adaptation of ResNet performs well in sequence
classification. When combined with the gating mech-
anism in LSTM, residual learning significantly im-
prove LSTM performances. In (Nigam, 2017), DL
models have been applied to the multi-label classifi-
cation task for assigning ICD-9 labels to textual med-
ical notes, finding that a Recurrent Neural Network
(RNN) and a RNN with Long Short-term Memory
(LSTM) units show an improvement over the Binary
Relevance Logistic Regression model.

It often happens that the classes lie in a hierarchi-
cal structure, such as a taxonomy. In (Baker and Ko-
rhonen, 2017) is applied a new method for hierarchi-
cal multi-label text classification that initializes a neu-
ral network final hidden layer such that it leverages la-
bel co-occurrence relations, such as hypernymy. The
model has been assessed on two hierarchical multi-
label text classification tasks in the biomedical do-
main, using both sentence and document-level clas-
sification, showing promising results.

Another common NN topology used for text clas-
sification is the one formed by both CNN and RNN.
In (Chen et al., 2017) this model has been applied
to multi-label text categorization. The proposed ap-
proach, through an ensemble application of convolu-
tional and recurrent neural networks, is able to capture
both the global and the local textual semantics and
to model high-order label correlations, having at the
same time a tractable computational complexity. The
experimental assessment shows that this approach
achieves the state-of-the-art performance when the
CNN-RNN model is trained using a large size dataset.

In (Liu et al., 2017) extreme multi-label text clas-

sification (XMTC) with DL models is described. In
details, a family of new CNN models tailored for
multi-label classification is presented. The proposed
model is tested with different datasets, producing very
good results in all cases. Large scale multi-label
text classification is analysed even in (Berger, 2015),
where the problem of automatic PubMed articles la-
belling is approached. They explored how both a
CNN and a RNN with a Gated Recurrent Unit (GRU)
can independently be used with pre-trained WEs to
solve the XMTC problem. On a data set with more
than two million documents and 1,000 potential la-
bels, the authors demonstrated that a GRU provides
substantial improvement over a Binary Relevance
model with a bag-of-words representation. Similarly,
in (Zhang et al., 2017a) a DL method applied to ex-
treme multi-label learning (XML) is presented. The
paper aims to better explore the label space by build-
ing and modelling an explicit label graph, proposing
a practical deep embedding method for XMTC. The
main contribution is the ideas of non-linear embed-
ding and modelling label space with graph priors at
the same time. Extensive experiments show that this
method performs competitively against state-of-the-
art systems. A comparison between different machine
learning models for XMTC is presented in (Baumel
et al., 2017), analysing the performances obtained in
this task applied to ICD-9 codes of Electronic Health
Records assignment. Support Vector Machines, Con-
tinuous Bag of Words, CNNs and GRUs have been
considered, demonstrating that the latter two models
provide the best results.

3 METHODOLOGY

Different DNNs have been proposed in literature for
multi-label text classification. In all of them it is pos-
sible to identify the following three groups of layers,
hereinafter modules:

• Word Embeddings module;

• Feature Extraction module;

• Classification module.

In this paper we consider this simple but effective
paradigm applied to two network topologies: Dense
and CNN-Dense, respectively depicted in the left-side
and in the right-side of the Figure 1.

The Dense network is composed by a WEs mod-
ule, which represents the input text, followed by a
classification module composed by two fully con-
nected dense layers, which classify the output. The
CNN-Dense network has an additional Feature Ex-
traction module composed by a 1D Convolutional



Figure 1: Graphical representation of the DNN models
used. The yellow blocks represent the word embeddings
module, the green blocks are the feature extraction layers
and the blue blocks represent the classification layers.

layer followed by a max pooling layer which acts as
feature extractor, sited between the WEs and classifi-
cation modules.

In the following of this section we will describe
the details of these networks and the methodology
used to analyse their performances with increasing la-
bels number. We also briefly explain the details of
different Stochastic Gradient Descent (SGD) training
hyperparameters considered in our analysis.

3.1 Word Embeddings Module

In this scenario the Word Embeddings is mapped con-
ceptually into one layer and so we will refer to him
as layer or module indifferently. The Word Embed-
dings (Mikolov et al., 2013) layer is a shallow neu-
ral network that maps the input text into a vector
space. Previous experiments (see (Gargiulo et al.,
2017b), (Gargiulo et al., 2017a), (Alicante et al.,
2016b)) have shown the effectiveness of a Natural
Language Processing (NLP) applied to input text be-
fore the training phase.

In order to obtain optimal performances, this layer
has been pre-trained, applying on input text the fol-
lowing NLP: tokenization, punctuation and symbols
removing, stop-words filtering, lemmatization. We
used in WEs training the skip-gram algorithm with
hierarchical softmax, due to the better performances
observed with the dataset used in the experimental as-
sessment, if compared with continuous bag of words
and negative sampling.

The output of this layer is a dictionary of word
vectors, containing a vector for each word from the
training set. The word vectors will be represent the

whole text formed by the words in title and abstract
of each PubMed document.

3.2 Feature Extraction Module

The Feature Extraction Module is used only in the
CNN-Dense network. It consists of two cascading
layers, a 1D Convolution Neural Network (1D-CNN)
followed by a Max Pooling (MP). The 1D-CNN layer
takes as input the WEs vectors corresponding to each
word of title abstract of all papers from PubMed
dataset. The layer is formed by 100 filters with kernel
size equals to 5 striding of one position at time; the
activation function is a Rectified Linear Unit (ReLU).

The convolution input needs a fixed input size,
but the total word of each sample is not constant.
To overcome this problem, the maximum number of
words has been chosen equals to 500, considering the
average word number of dataset equals to 127 after
the NLP preprocessing (see Section 4.1). In case of
shorter word number, a zero padding is applied, while
in case of samples with more than 500 words, we dis-
card the last words of the text.

The 1D-CNN is followed by a MP layer of size
2. The result of this module is the automatic extrac-
tion of the features, which will be used into the next
classification layer.

3.3 Classification Module

The classification module is composed by two dense
fully connected layers: the first one has 64 and 512
outputs respectively for Dense and CNN-Dense net-
work topologies, while the second and final layer of
the whole DNN has an output number equals to the
number of classes L to be predicted and so it varies
depending on the different label number considered
(see section 4.1).

3.3.1 Loss Function

Following (Nam et al., 2014) results, the chosen loss
function is the sigmoid cross entropy 1:

loss(x,y) =−∑
l∈L

[(
yl · log

1
1+ exp(−xl)

)
+

+

(
(1− yl) · log

exp(−xl)

1+ exp(−xl)

)] (1)

where yl and xl are respectively the prediction and the
target for each label l ∈ L. The sigmoid cross entropy
loss function optimizes a multi-label one-versus-all
loss based on max-entropy and then is well suited for
multi-label problems.



3.3.2 SGD Hyperparameters

A key aspect in DNN training is the optimal hyper-
parameters setting, but despite its crucial importance,
this is a very difficult task (Ilievski et al., 2017). Some
hyperparameters are directly related to the the net-
work structure and topology, i.e. the number of hid-
den layers, the number of hidden units and the choice
of activation function. Other hyperparameters influ-
ence the training phase, because they are involved in
Stochastic Gradient Descent (SDG) function, during
the update of the parameters of the network.

The SGD algorithm updates the parameters θ of
the objective J(θ) following the equation 2:

θ = θ− lr∇θJ(θ,xi,yi) (2)

where xi,yi is a sample/label pair from the training set
and lr is the learning rate. Each parameter update in
SGD is usually computed with a minibatch and not a
single example. The previous equation 2 shows that
the lr and the batch size will directly influence the re-
sults of the DNN training, being the SGD a function
of both them. In addition to that, due to the SGD iter-
ative nature, another important hyperparameter is the
number of iterations.

SGD can not solve easily ravines, namely the areas
where the function surface curves much more steeply
in one dimension than in another (Sutton, 1986). This
happens around local optima and causes oscillations
of the SGD and its very slow convergence. Momen-
tum (Polyak, 1964) is a method to accelerate the func-
tion along the shallow ravine. The momentum update
is given by the following equation 3:

vt =µvt−1 + lr∇θJ(θ,xi,yi)

θ =θ− vt
(3)

where vt is the velocity at iteration t and µ is the
momentum coefficient. The effects of the modifica-
tion of SGD equation with momentum can be ex-
plained in analogy with a ball pushed down a hill.
The ball accumulates momentum, becoming faster
and able to reach the top of the next hill that it founds
on its way. The same thing happens with parame-
ters update: the momentum term increases updates
for dimensions whose gradient points in the same di-
rections and reduces updates for dimensions whose
gradient changes directions. In this way, the SGD can
gain faster convergence and reduce its oscillations.

A further improvement to momentum SGD has
been contributed by Nesterov with accelerated gradi-
ent (Nesterov, 1983), which is equal to:

vt =µvt−1 + lr∇θJ(θ−µvt−1,xi,yi)

θ =θ− vt
(4)

The term θ−µvt−1 in equation4 approximates the
next parameters update (only the gradient calculation
is missing, but in case of small differences this ap-
proximation is good). Thus, the gradient is calculated
not to current parameters θ like in previous equa-
tion 3, but to an approximation of future position.
The effects of this modification result in an increased
responsiveness, because the velocity is corrected in
order to take into account the next position. In this
way, momentum increases or decreases adjusting it-
self to the future variations, helping the convergence
of SGD.

The proposed methodology aims to analyse the ef-
fects of above described SGD hyperparameters (learn-
ing rate lr, batch size, momentum µ and use of Nes-
terov method), examining their link with label set size
in an XTMC problem trained with a Big Data source,
as shown in next section 4.

4 EXPERIMENTAL
ASSESSMENT

In this section we first describe the details and the fea-
tures of the datasets used in the experimental assess-
ment. Then, we report the parameters used in Word
Embeddings layer to obtain pre-trained WEs and the
evaluation metrics considered. Finally, we present
the obtained results, considering an increasing labels
number and showing the effects of different learning
rate and momentum values on the performance of the
DNNs.

4.1 Dataset Description

The experimental assessments has been performed
using the PubMed papers collection1. PubMed is a
free search engine maintained by US National Library
of Medicine and specialized for medical and biolog-
ical scientific articles. The Big Data architecture de-
scribed in (Gargiulo et al., 2017a) has been used to
extract from PubMed repository a dataset formed by
a total number of 11,150,090 papers. Only the titles
and the abstracts of each article have been consid-
ered, in addition to the corresponding labels, named
MeSH (Medical Subject Heading). Each document
from the dataset is labelled with a variable number
of classes, which belong to a large set of 27,755
different MeSHs, organized in a hierarchical struc-
ture2. The same MeSH can be located in one or

1https://www.ncbi.nlm.nih.gov/pubmed/
2The MeSH hierarchical structure can be browsed at

https://meshb.nlm.nih.gov/treeView



more branches of the tree. All these features iden-
tify a multi-class multi-label problem, as described in
section 1. Starting from this dataset, we created five
different training sets with an increasing number of
classes. The next table 1 summarizes the text features
of the original dataset.

Table 1: Overall Statistics of PubMed Papers Collection:
N is the total document number, E(Words) is the average
number of words per document in the considered dataset,
after the NLP.

Dataset N E(Words)
PubMed 11,150,090 127

In order to obtain different label sets, we process
the labels of each document, exploiting the MeSH hi-
erarchical structure and creating five different sets,
with respectively 16, 116, 676, 6,339, and 27,755
classes. The first one is formed by the 16 MeSH
classes corresponding to the root level of the MeSH
hierarchical structure, which indexes the main cate-
gories. In this case, we substituted all labels with
their corresponding root class label, obtaining the first
training set. In the same way, we then considered the
MeSHs respectively from the first, the second and the
third level after the root of the tree structure, and like
the first case, we substituted each label of the origi-
nal dataset with its corresponding parent of first, sec-
ond and third level label, obtaining respectively 116,
676 and 6,339 labels. At least, we considered the
original dataset with MeSHs from all levels, formed
by 27,755 classes. As we can see, the first dataset
belongs to a multi-label problem, the second dataset
is a simplified version of an XMTC problem, while
the last three datasets can be properly considered as
XMTC problems.

The text from the original dataset has been pre-
processed using NLP techniques briefly described in
previous section 3 (see (Gargiulo et al., 2017b) for
further details), lower-casing, lemmatizing, removing
punctuation and stop words. The preprocessed text
has been used to train the WEs layers, using the pa-
rameters described in next subsection 4.2.

The obtained datasets have been split in training
sets and test sets, randomly selecting the 99% of the
samples for the training set and the remaining 1% for
the test set; the latter has been further divided in ten
smaller test sets, each one formed by approximately
2,500 samples. The following table 2 summarizes the
main features of the obtained datasets in terms of class
numbers, document numbers, average number of la-
bels per document, average number of documents per
label.

The multi-label PubMed article classification

Table 2: Dataset statistics as function of deeper level of
MeSH hierarchy selected. In the table L is the total class
number, L∗ is the average number of labels per document
and Lo is the average number of documents per label.

MeSHDepth L L∗ Lo

0 16 5.88 4,100,528.63
1 116 8.57 824,077.34
2 676 10.17 167,800.57
3 6,339 11.12 19,557.78
All 27,755 12.91 5,188.15

problem is one of the tasks of BioAsq3, a research
challenge on biomedical semantic indexing and ques-
tion answering. The experimental results obtained in
this paper can add further details to latest BioAsq re-
sults (Nentidis et al., 2017), helping the research com-
munity to solve this hard XMTC problem.

4.2 Word Embeddings Parameters

The Word Embeddings (WEs) layer is a shallow neu-
ral network able to produce a vector representation
of the words of the training set. The obtained vec-
tor space is used for all experiments with different
datasets, because only label number changes between
various training sets, while the text from title and ab-
stract of the papers remains the same. Thus, the WEs
layers is the same in all tested DNNs.

In our experimental assessment, the WEs has
been pre-trained using Gensim framework (Řehůřek
and Sojka, 2010), an effective Python implementa-
tion for WEs training. We used skip-gram algorithm
with hierarchical softmax (Mikolov et al., 2013),
setting a vector size equals to 512, a window size
equals to 5, discarding the words that appears only
one time in the training set and setting a threshold
for higher-frequency words to be randomly down-
sampled equals to 0.0001.

4.3 Evaluation Metrics

To evaluate the performance of the models we use the
commonly used F-measure metric, which is equal to
the harmonic mean of recall (ρ) and precision (π). ρ
and π (Özgür et al., 2005) are defined as follows:

πi =
T Pi

T Pi +FPi
, ρi =

T Pi

T Pi +FNi
(5)

where T Pi (True Positive) is the number of doc-
uments assigned correctly to class i; FPi (False Pos-
itive) is the number of documents that do no belong

3http://bioasq.org/



to class i but are assigned to class i incorrectly by the
classifier; and FNi (False Negative) is the number of
documents that are not assigned to class i by the clas-
sifier but which actually belong to class i.

In this paper we consider the micro-averaging: in
this case the F-measure is computed globally over all
category decisions and ρ and π are obtained by sum-
ming over all individual decisions:

πmicro =
T P

T P+FP
=

∑L
i=1 T Pi

∑L
i=1(T Pi +FPi)

(6)

ρmicro =
T P

T P+FN
=

∑L
i=1 T Pi

∑L
i=1(T Pi +FNi)

(7)

Fmicro
1 =

2πρ
π+ρ

(8)

The Fmicro
1 values are in the interval (0;1) and

larger values correspond to better performances; in
literature these values are usually expressed as a per-
centage, as we did in the following.

4.4 Experimental Results and
Discussion

We evaluated the performances of the DNNs de-
scribed in section 3, considering an increasing label
number and analysing the effects of different SGD hy-
perparameters settings in terms of πmicro, ρmicro and
Fmicro

1 measures.
To give an idea of the models complexity, the

next table 3 reports the number of parameters of the
networks in function of the MeSH Depth and conse-
quently of the number of classes involved.

Table 3: Model parameters as function of MeshDepth and
consequently of the labels number (L).

MeSHDepth L #Parameters
Dense CNN-Dense

0 16 16,385,104 13,263,620
1 116 16,391,604 13,314,920
2 676 16,428,04 13,602,200
3 6,339 16,796,099 16,597,319
All 27,755 18,188,139 27,493,727

As described above, the label set size is increased
exploiting the MeSH hierarchical structure. The cor-
responding DNNs parameters are influenced only in
the last dense layer, which is directly related to the
classes number. For this reason, only the last two
XMTC problems, corresponding to MeSH depth 3
and all, show a significantly larger parameters num-
ber, if compared with the first three cases. This effect

is more evident on the CNN-Dense models because
the first dense layer has 512 units respect of the 64 of
the Dense topology. The different number of the cho-
sen hidden units (first dense layer) between the two
topologies depends on the number of elements in in-
put to the first dense layer that, for the CNN-Dense
scenario, is considerably reduced by the Feature Ex-
traction Module (CNN-MaxPooling).

We used the Nesterov correction (see sec-
tion 3.3.2) in all cases, because our experiments con-
firmed that it produces a slight enhancements of about
1% in all values. Then, a first result is that in XMTC
problem trained with Big Data the Nesterov momen-
tum provides a little performances boost.

The details of the results of the experiments
are summarized in Table 4 and Table 5, where
the performances are reported in terms πmicro,
ρmicro and Fmicro

1 (see Section 4.3), for different
StepsPerE poch, Learning Rate lr and Momentum val-
ues. The StepsPerE poch value is directly related to
MiniBatchSize, being the latter one equals to the total
samples number divided by the Steps Per Epoch.

MiniBatchSize =
#TotalSamples
StepsPerE poch

(9)

The obtained results show that the best network
topology between the two analysed is the CNN-
Dense, demonstrating the need of the feature ex-
traction module. It is worth noting that in all con-
sidered cases the best results are obtained using a
StepsPerE poch value equals to 10,000, confirming
the usefulness of a smaller MiniBatch size with a Big
Data training set.

It is interesting to analyse the hyperparameters
values selected to achieve the best performances given
the Depth Level, considering at the same time the
dataset characteristics (see Table 2). When the prob-
lem is a simple multi-label for the 0−Level with 16
classes, the best results are obtained using a slower
learning rate equals to 0.01 and a momentum equal
to 0, which do not increases the convergence speed
of the SGD. On the other hand, increasing the num-
ber of labels involved considering an higher Depth-
Level corresponding to real XMTC problem, the re-
sults show a different behaviour of the performance
in function of the hyperparameters. In fact, in the
latter cases, the learning rate speed that achieves the
best performances is equal to 0.1. In addition to that,
the use of smaller batch size in conjunction with an
higher momentum value equals to 0.5, considerably
increases XMLT performances.

The overall results show that there is a signifi-
cant performances boost (resulting in some cases in
a Fmicro

1 improvement of more than 10%) with the use



Table 4: Fmicro
1 , πmicro and ρmicro obtained using Dense network topology. The values are evaluated considering the datasets

depicted in the Table 2 from which a training set and ten different test sets was extracted, the results are obtained as an average
of the ones obtained on the ten test sets. The table shows the performance behaviour considering 100 epochs, two values of
StepsPerE poch, two learning rate (lr) values and, for each of them, two momentum (µ) values. The best values per row are
highlighted in bold.

StepsPerE poch = 1,000

Depth
lr = 0.01 lr = 0.1
µ = 0 µ = 0.5 µ = 0 µ = 0.5
Fmicro

1 πmicro ρmicro Fmicro
1 πmicro ρmicro Fmicro

1 πmicro ρmicro Fmicro
1 πmicro ρmicro

0 82.97% 82.59% 83.35% 82.92% 82.15% 83.70% 81.66% 81.65% 81.67% 79.52% 77.98% 81.13%
1 56.48% 74.70% 45.40% 59.82% 74.04% 50.18% 63.77% 72.69% 56.80% 63.47% 70.98% 57.40%
2 33.71% 73.64% 21.86% 36.74% 73.35% 24.51% 44.94% 70.40% 33.00% 48.05% 69.68% 36.67%
3 13.86% 84.19% 7.55% 13.86% 84.19% 7.55% 27.29% 72.41% 16.81% 28.96% 70.79% 18.20%
All 9.21% 63.80% 4.96% 9.21% 63.80% 4.96% 9.21% 63.80% 4.96% 9.21% 63.80% 4.96%

StepsPerE poch = 10,000

Depth
lr = 0.01 lr = 0.1
µ = 0 µ = 0.5 µ = 0 µ = 0.5
Fmicro

1 πmicro ρmicro Fmicro
1 πmicro ρmicro Fmicro

1 πmicro ρmicro Fmicro
1 πmicro ρmicro

0 83.78% 84.79% 82.81% 83.51% 84.61% 82.44% 81.16% 82.30% 80.06% 78.07% 77.02% 79.15%
1 65.40% 76.58% 57.06% 66.46% 76.09% 59.00% 66.00% 74.68% 59.13% 64.35% 72.53% 57.83%
2 44.12% 74.53% 31.33% 47.28% 74.16% 34.70% 52.52% 73.82% 40.76% 53.62% 73.64% 42.15%
3 25.14% 75.52% 15.08% 26.43% 76.38% 15.98% 31.28% 77.88% 19.57% 34.81% 77.02% 22.49%
All 9.21% 63.80% 4.96% 9.21% 63.80% 4.96% 18.57% 72.95% 10.64% 20.15 73.54% 11.68%

Table 5: Fmicro
1 , πmicro and ρmicro obtained using CNN-Dense network topology. The values are evaluated considering the

datasets depicted in the Table 2 from which a training set and ten different test sets was extracted, the results are obtained as
an average of the ones obtained on the ten test sets. The table shows the performance behaviour considering 100 epochs, two
values of StepsPerE poch, two learning rate (lr) values and, for each of them, two momentum (µ) values. The best values per
row are highlighted in bold.

StepsPerE poch = 1,000

Depth
lr = 0.01 lr = 0.1
µ = 0 µ = 0.5 µ = 0 µ = 0.5
Fmicro

1 πmicro ρmicro Fmicro
1 πmicro ρmicro Fmicro

1 πmicro ρmicro Fmicro
1 πmicro ρmicro

0 83.16% 83.55% 82.78% 83.28% 83.52% 83.03% 82.36% 82.15% 82.58% 81.33% 81.18% 81.47%
1 62.57% 73.05% 54.17% 64.49% 73.48% 57.46% 65.66% 73.43% 59.38% 64.98% 73.88% 58.00%
2 36.84% 66.81% 25.83% 40.87% 69.25% 28.99% 51.58% 69.04% 41.16% 52.89% 69.14% 42.83%
3 13.86% 84.19% 7.55% 13.86% 84.19% 7.55% 14.12% 84.26% 7.71% 28.94% 69.27% 18.29%
All 9.21% 63.80% 4.96% 9.21% 63.80% 4.96% 9.21% 63.80% 4.96% 0.01% 100.00% 0.00%

StepsPerE poch = 10,000

Depth
lr = 0.01 lr = 0.1
µ = 0 µ = 0.5 µ = 0 µ = 0.5
Fmicro

1 πmicro ρmicro Fmicro
1 πmicro ρmicro Fmicro

1 πmicro ρmicro Fmicro
1 πmicro ρmicro

0 84.33% 85.37% 83.30% 84.17% 85.20% 83.33% 82.30% 83.07% 81.55% 80.79% 81.51% 80.09%
1 68.56% 77.19% 61.67% 69.02% 77.33% 62.32% 68.85% 76.62% 62.51% 67.56% 75.39% 61.21%
2 52.37% 74.57% 40.35% 54.67% 75.01% 43.01% 57.06% 76.36% 45.55% 57.01% 76.20% 45.54%
3 24.62% 74.31% 14.75% 27.81% 74.68% 17.09% 39.93% 75.67% 27.12% 45.87% 74.78% 33.08%
All 9.21% 63.80% 4.96% 9.21% 63.80% 4.96% 20.45% 69.00% 12.01% 22.20% 72.11% 13.12%

of a feature extraction module, the setting of a smaller
MiniBatch size, the selection of a faster learning rate
and an higher momentum value of SGD.

5 CONCLUSION AND FUTURE
WORK

In this paper we presented an analysis on the usage
of two typologies of DNN, Dense and CNN-Dense
for extreme multi-label and multi-class text classifi-
cation (XMTC). We considered multi-label classifi-



cation problems characterized by different number of
labels, ranging from an order of about 10 to an or-
der of about 30,000. The considered task is harder
than a normal multi-class text classification due to
variable label number (multi-label) associated to each
sample. We analysed the performances and the be-
haviours of the networks considering the effects of the
training hyperparameters of the SGD function, with
an increasing classes number and average number of
labels per sample, using a Big Data training source
extracted from PubMed repository. We performed a
preliminary empirical evaluation of the link between
the SGD hyperparameters and the dataset complex-
ity, providing an overview of the performances and
the optimal settings of learning rate, momentum and
batch size for the considered problem.

As future works we are planning to investigate the
impact of the hyperparameters on other DNN topolo-
gies, and we are considering to build a completely
new topology customized for the hierarchical XMTC
problems.

In addition, we will investigate on the use of hi-
erarchical label structure, exploiting the better perfor-
mances of higher label levels to correct the results ob-
tained with deeper cases.
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