
Component-based Modeling in Umple

Mahmoud Husseini Orabi, Ahmed Husseini Orabi and Timothy C. Lethbridge
School of Electrical Engineering and Computer Science, University of Ottawa,

800 King Edward Avenue, Ottawa, Canada

Keywords: Umple, Active Object, Composite Structure, UML.

Abstract: Modelling tools provide weak or no support for the rich semantics of composite structure, such as enforcing

connection constraints and maintaining referential integrity. Tools that generate code from composite

structure typically depend on excessive and complex internal class representations such as Actor or BasePort.

In this paper, we present easy-to-comprehend syntax describing composite structure in Umple. We describe

a novel protocol-free approach that dynamically extracts communication protocols as a way to ease

component-based modelling, and lead to concise and optimized code generation. We outline Umple

composite structure features, and the related code generation patterns that resolve difficulties around

connections and the integrity of multiplicity constraints.

1 INTRODUCTION

Composite structure development refers to the

implementation of concurrent components that

interact and communicate via ports and connectors

(Orabi, Orabi, & Lethbridge, 2016).

In UML, interactions among components are

handled as messages and signals. There are two

message-passing actions, one-way call

(asynchronous call) and calls that block waiting for a

response (synchronous call). An asynchronous call is

referred to as a one-way message passing, since it

does not support a scheduling mechanism to receive

results. Typically, events are triggered when

receiving messages by invoking a corresponding

method. Event handling is often done in a

component's state machine.

Handling message flow among ports and

components usually depends on protocols. Typically,

defining a protocol involves repetitive steps with

redundant information to define how in and out

events are managed. Hence, complexity is added to

the development process.

Open-source tools such as eTrice and ArgoUml

do not support all the major features of composite

structure (Orabi et al., 2016). On the other hand,

commercial tools that provide strong support to

composite structure typically restrict users to certain

libraries, such as Connexis, which is tightly integrated

with RSARTE (Lakkimsetti, 2014).

Motivated by the above, we show how we extend

Umple, an open-source tool, to support composite

structure and overcomes such limitations.

Umple is a text- and model-oriented

programming language that allows for generative

programming using many target languages such as

C++, Java, and PHP (Badreddin, Forward, &

Lethbridge, 2014; Badreddin, Lethbridge, &

Forward, 2014; Lethbridge, Abdelzad, Husseini

Orabi, Husseini Orabi, & Adesina, 2016; Orabi et al.,

2016). Umple implements the core features of UML,

such as state machines, associations, and attributes. In

addition, Umple provides other usable features to

ease development such as traits, mixins, and aspect-

orientation. The selected target language in this paper

is C++. Umple features can be fully tried and tested

using the UmpleOnline website (try.umple.org).

Our key contributions can be summarized as

follows:

• We support major composite structure features

using compact keywords and shortened syntax.

• We provide generic extensible communication

and transport definitions to support distributed

examples. We implement support for the

TCP/UDP communication protocol and JSON as

a message interchange format to be the default

medium for communication among distributed

components.

Orabi, M., Orabi, A. and Lethbridge, T.
Component-based Modeling in Umple .
DOI: 10.5220/0006715902470255
In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), pages 247-255
ISBN: 978-989-758-283-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

247

• We incorporate the active object pattern

(Lavender & Schmidt, 1996) to extend and

enable the request-scheduling mechanism.

• We implement a protocol-free approach, in

which protocols are inferred from ports,

connectors, and components.

• Our implementation works for distributed

applications, and does not restrict users to certain

network paradigms or any particular transport

data format.

Composite structure features are introduced to

Umple as a part of this research, as a major step

towards the development of connected embedded

devices.

2 COMPONENT-BASED

MODELLING AND

STANDARDS

Many of the existing component-based modelling

tools (Orabi et al., 2016) adapt specifications such as

UML (OMG, 2011), SysML (Mallet, Peraldi-Frati, &

André, 2009), Specification and Description

Language (SDL), and Real-time Object-Oriented

Modelling (ROOM) (Selic & ObjecTime, 1996).

In our work, we are more inspired by UML, since,

1) OMG uses UML as the de facto modeling notation

for object-oriented systems (Grady Booch, James

Rumbaugh, 2005), and 2) UML is well-known for

design specification for real-time systems, especially

embedded devices. As well, in terms of real-time

modelling, we follow many of the ROOM

specifications. However, we have an extended the

active object pattern to handle concurrency (Orabi,

2017).

Figure 1: SysML diagram types.

Additional SysML diagrams, as compared to UML are

highlighted

SysML provides a lightweight profile of UML in

terms of aspects such as stereotypes, constraints, and

tagged values; hence, it can ease and reduce UML

restrictions, and support a wide range of systems,

either software or hardware.

SysML only uses seven of the UML diagrams

(Figure 1) in addition to two diagram types,

requirement and parametric (Figure 2). A class

diagram is called a "block definition" diagram and a

component (composite) structure diagram is called an

"internal block" diagram.

Figure 2: UML diagram types.

SDL’s main purpose is to provide unambiguous

software system specifications (Olsen, Færgemand,

Møller-Pedersen, Smith, & Reed, 1994). SDL has

mainly been used in the modeling of real-time

communication systems. It provides similar

functionality as UML but with different terminology

and notation (Table 1).

ROOM was developed by ObjectTime and

introduced in the ObjectTime Developer Tool (ODT)

(Selic & ObjecTime, 1996). ROOM incorporates a

variant of Harel's statecharts. In 1996,

RoomLanguage represented the actor as the primary

element that communicates with other elements using

port interfaces. A port is an instance of a protocol

class that defines the message communication

between actors. The concept of Actor was later

referred to as a Capsule in UML-RT. ROOM supports

hierarchical modeling and incremental refinement of

complex behaviour.

Table 1: UML to SDL term mapping.

UML SDL

Class Type

Interface Interface

Associations Channels

Operations Signal List

Variable Attribute

Sub Block

Abstract Abstract

Implementation Process

Type Gate

Inheritance Inheritance

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

248

3 COMPOSITE STRUCTURE IN

UMPLE

In Umple, components, ports, and connectors are

used to describe structural implementation of an

object, while state machines are used to define its

behaviour. A component is viewed as an active object

entity with a unique identifier (UID) that handles its

own thread of execution and encapsulates its well-

defined behaviour.

The implementation of composite structure in

Umple uses an extended version the active object

pattern (Orabi, 2017). In Umple, an active object class

is referred to as a component. Communication among

components is established via ports and connectors,

with necessary protocols being internally generated

and hidden from the developer.

Each component has a public interface, UID,

internal router, connection type, and transport data

format. An internal router is used to manage

components in a distributed system.

We use template meta-programming (TMP) to

avoid stub generation, reduce the volume of code the

user has to write, and provide an extensible

communication stack (Orabi, 2017; Smaragdakis &

Batory, 2000).

The public interface refers to the methods

exposed for communication, which can be

synchronous, asynchronous, or future asynchronous.

They are internally represented as a generic template

proxy that enables a publish-subscribe mechanism,

and uses the internal router of their owning class.

Standard public methods are synchronous, while port

public interface methods are asynchronous. A special

case is future asynchronous, which represents an

active method with a return type. This means that in

the distributed mode, a component that initiates future

asynchronous calls is going to receive a scheduled

response asynchronously from the other component.

A component handles both inter-process

communication (IPC) and remote method invocation

(RMI). The internal routing structure provides the

essential blocks to ease the building of components

that can communicate. The internal routing table is

used to handle send-reply and request-scheduling

mechanisms between component's internal methods

and respondents. A component can be either in local

or distributable state. Being in distributable state

means that either the component is listening (acting

as a server) or initiating communication (acting as a

client). There is no restriction to a specific network

paradigm or multi-party communication.

A communication stack provides abstract

definitions for connection mechanisms and data

interchange transport formatters. By default, we

support TCP/IP as a connection mechanism, and

JSON as a data interchange format. The code can be

easily extended to support different connection

mechanisms such as UDP and Bluetooth, and other

formats such as XML.

3.1 Components and Parts

A class becomes a component if it has at least one

active method, port, or connector. An active method

is defined as a regular method proceeded by the active

keyword (Snippet 1 - Lines 2 and 9). When invoking

an active method, it executes asynchronously, since it

has its own thread.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

class A { // A component Umple

 active method1 {

 cout <<"Method without parameters"

 << endl;

 }

}

class B {

 active method2 (int someParam) {

 cout << " Parameter value"" <<

 someParam <<endl;

 }

}

class C {

 A a;

 B b;

}

Snippet 1: An example of a component definition.

A part, or subcomponent, is an instance of a

component, and it is owned by the component

structure of some component. The instance type of a

part, or subcomponent, can be the same as its owning

component; this is similar to the programming

patterns, in which an instance of a class is created in

that class's definition in places such as constructors,

attributes, or methods. When a component owns

multiple parts, it is referred to as a composite

component. A subcomponent can possibly be

composite. A component has a composition

relationship to each class typed by its owned parts.

Figure 3: Multiple instances of different components.

Component-based Modeling in Umple

249

In Figure 3, the parts "a" and "b" are instances of

A and B respectively, and they are owned by a

component "c" of the type C. The Umple code is in

(Snippet 1; see definitions of classes A, B, and C).

This means that C has composition relationships to A

and B.

3.2 Ports

A port in Umple is defined as an attribute, and

additionally has a direction, which can be in, out, or

both (specified using the keyword port and meaning

bi-directional, and also referred to as dual). A port

attribute is lazy. In Umple, lazy attributes are not

initialized through their owning class’s constructor.

The keywords in, out, and port are used to set a

port direction (Snippet 2 - Lines 2-4).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

class Component{ Umple

 in Integer inPort;

 out Integer outPort;

 port Integer dualPort;

 internal in Integer privatePort;

 in SomeClass someComplexPort;

 port CompoundPort compoundPort;

 CompoundPort

 active compoundPort_ActiveMethods(){

 [someInPort]

 active void handleDefaultDirection(){}

 ->handleConjugatedDirection(){

 // CompoundPort inversion is as below

 //out Integer someInPort;

 //int Integer someOutPort;

 }

}

 void active someMethod(){

 stateEvent(pIn1 + 1);

 }

 pIn1Statemachine{

 receive{

 stateEvent(int val) /{cout<< val;} ->done;

 }

 done {}

 }

}

class SomeClass{}

class CompoundPort{

 in Integer someInPort;

 out Integer someOutPort;

}

Snippet 2: Port examples.

A port has visibility since it is defined as an

attribute. A private attribute in Umple is defined using

the internal keyword (Snippet 2 - Line 5); by default,

an attribute is public (Snippet 2- Lines 2-4). Private

ports can only be accessed by their owning

component.

A port can be simple, complex, or compound. A

port is simple if its attribute type is simple such as

string, integer, or double (Snippet 2- Lines 2-5);

otherwise, it is considered complex (Line 6). A

compound port consists of a number of subports, as a

way to encompass a number of events for

transmission (Lines 7, 8, and 30-33).

A port attribute type has no restrictions. For

instance, a port attribute can be typed by a

component.

Within a component-based application,

communication is established among a number of

components instances. The boundary of instances

created is managed using class associations, similarly

to any normal application (Snippet 3 - Line 7).

Messages propagated will be received by all instances

associated (Line 23).

3.3 Connectors

A connector associates between two ports in order to

establish a communication channel for data

transmission. A class is considered a component if it

has a connector defined, even if this class does not

own active methods or ports.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

class Client{ Umple

 in String cp;

}

class Server{

 out String sp;

 * -- * Client; //Many to many association

}

class Sys{

 Client c;

 Server s;

 s.sp-> c.cp;

 public static void main(int argc, char *argv[]){

 Server* server= new Server();

 Client* c1= new Client();

 Client* c2= new Client();

 Client* c3= new Client();

 server ->addClient(c1);

 server -> addClient (c2);

 server -> addClient (c3);

 s->sp("Broadcast a message to all instances");

 }

}

Snippet 3: Basic active objects in Umple.

The operator "->" is used to define a connector,
such that the port on the left is the source, and the port
on the right is the target. A connector can associate
between ports in the same component (Snippet 4 -
Line 8) or different components (Lines 24 and 25).

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

250

The composite structure of "D" defined in Snippet 4
is visualized in Figure 4 (generated by UmpleOnline).

A connector can only connect between ports if
they have opposite directions; i.e. an in port versus
out port, dual port versus in port, dual port versus out
port, and dual port versus dual port.

The notion of "->" that we use to define
associations and connectors can be confusing to
C/C++ developers, since it is exactly the same as
using pointers (Snippet 4 - Line 21). For future
research, we will look into trying to reduce the need
to having to use pointers in target-language code such
as methods that the users embed in the Umple code.

Figure 4: Composite structure of connected components.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

class A{ Umple

 out Integer outPort;

}

class B{

 in Integer inPort ;

 out Integer outPort;

 inPort -> outPort;

}

class C{

 in Integer inPort;

}

class D{

 A a;

 B b;

 C c;

 void active someMethod(){

 a->outPort(120); // Send a signal of 120

 }

 a.outPort->b.inPort;

 b.outPort->c.inPort;

}

Snippet 4: Connector examples.

3.4 Protocols and Our Protocol-Free
Approach

Typically, an active method uses port attaches to

listen to port events (Snippet 5 – Line 13, 21, and 38).

In our protocol-free approach, a port attachment holds

the information about incoming and outgoing ports,

which makes it possible to generate protocols based

on such information.

In terms of code generation, a protocol class is

generated to handle communication for each

component via its ports. When a port type is complex,

we apply an appropriate serialization/deserialization

technique. A port value is serialized into an

intermediary object transmitted in the form of

messages. When messages transmitted are received,

they are deserialized back to the original object form.

Data is sent through connectors as signals. A port

is expected to be able to receive signals

simultaneously from different connectors. This

means that there must be a queue mechanism to

handle signals appropriately based on their priority

and/or receiving order.

In our implementation, we have a priority FIFO

queue, in which requests are ordered based on their

priorities (i.e. Snippet 4 - Line 21), and then based on

their receiving order.

At the level of the generated code, queuing

depends on an internally generated helper class,

MessageService. The utility class MessageService is

also generated when processing any Umple model

that uses composite structure features.

Communicating components can exist in different

applications or locations. Hence, it was important to

support buffered message transmission. This is

handled using a generic API MessageDescriptor we

implemented, which is also generated as needed.

MessageDescriptor follows a publisher- subscriber

pattern. MessageDescriptor and MessageService

APIs are available in UmpleOnline when generating

an Umple model that has ports or connectors defined.

By default, the maximum size of a transfer request

is 512 Kilobytes. If a message to be transmitted

exceeds this maximum size, it will be divided into a

number of smaller chunks, such that each chunk size

will not exceed that size. When all chunks are

received, they will be assembled into a message,

which will be deserialized into the form of the object

data originally sent. We selected a small maximum

size in order to make sure that it will not exceed the

maximum transmission unit (MTU) of a network,

such that it will take less memory and process fast.

For future work, we will experiment with other values

to see which can be better, and investigate whether we

can adjust the value at the model level.

MessageService works closely with the

publisher-subscriber API existing in

MessageDescriptor. Upon receiving incoming events,

new messages will be created based on a subscriber

list, which contains the active methods subscribed.

The created messages will be added to the message

queue using the MessageService API.

Component-based Modeling in Umple

251

4 PORT TYPES

A port has a type that can be either conjugated or

base. By default, a port is base (Snippet 2 - Lines 2-

6). A conjugated port (Lines 11 and 12) can be

alternatively referred to as an invert port. For

instance, a conjugated in port also acts as an out port,

and a conjugated out port also acts as an in port.

Conjugation is only used with compound ports. When

a port is compound, its conjugated version will have

all of the subports inverted, as commented in (Snippet

2 - Lines 13-15).

An in or dual port can additionally be a relay or

end port (Selic, 1998). Relay and end ports are called

external ports. Any out port is a relay port (Snippet 4-

Lines 2 and 7). Ports that propagate signals to other

ports are considered relay ports (Line 6). Signal

propagation stops at end ports (Lines 12).

The process of signal propagation changes

whether a port is a service or nonservice port, and

whether it is a behaviour or nonbehaviour port.

A service port expects to receive inputs from, or

send outputs to, its environment. Service ports are

drawn on the boundary of its owning part. In Umple,

public ports are considered service ports (i.e. Snippet

2 - Lines 2-4).

On the other hand, nonservice ports are only

visible within its part, and thus they are drawn within

the internal region of its part. In Umple, private ports

are considered nonservice (Snippet 2 - Line 5).

A nonservice port can still receive or send signals

to or from other components via another relay port,

which will act as an intermediary port.

When a port triggers a state machine event, it is

considered a behaviour port (i.e. Snippet 2 - Lines 19-

28).

A port cannot be nonservice and nonbehaviour at

the same time. On the other hand, a service port can

possibly be a behaviour or nonbehaviour port.

Associations are typically used to manage the

number of port instances in a class. A replicated port

means that this port can have multiple instances.

When a port is connected to other ports, it is referred

to as a wired port. An unwired port can still connect

dynamically to other ports during runtime.

Table 2 summarises the different types of ports.

Figure 5 shows ports of different types visualized

using UmpleOnline. We follow the notations in

specifications such as UML (OMG, 2011) and

AUTOSAR (AUTOSAR, 2014).

When a port is a service port, it is drawn on the

boundary of the composite structure; otherwise, it is

drawn within the composite. Hence, all ports in Figure

5 are service ports, since they are all drawn on the

boundary of their owning component.

Figure 5: Visualization of different port types using Umple.

We recognize wired ports if they are connected to

other ports via connectors; Figure 4 for instance.

We distinguish between in and out ports using the

crescent symbol, such that the open end of the

crescent refers to the out port, and the closed end

refers to the in port (Orabi et al., 2016).

At the moment, we do not visually distinguish

between behaviour and nonbehaviour ports, since this

will require parsing users' code to check whether

there are invocations to state events (Snippet 2 - Line

20). For future work, we will assess the necessity of

supporting this feature.

Table 2: Port types.

Type Description

Behavior Triggers state machine events

Nonbehaviour Does not propagates signals via state

machines

Complex Encompasses a number of attributes

rather than a single attribute as in simple

ports

Base A port designed to send out signals

Conjugated A port that also defines an inverse port

that operates in the reverse manner

Service Used to communicate between ports in its

environment and ports in other

environments; i.e. public or external

Nonservice Only visible within its part; i.e. private

Replicated Can have multiple instances.

In Provides a service for other ports. It can

be conjugated, replicated, or service

Out Requires a service from other ports. It can

be conjugated, replicated, or service

Wired Means that a port is connected to other

ports at the model level

Unwired Means that a port is not connected to other

ports at the model level, but possibly can

still connect at runtime

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

252

5 CASE STUDY

In this section, we demonstrate a case study (Snippet

5) that follows component-based and event driven

programming. In this case study (Figure 6), we report

on a component-interface version of the one in (Orabi

et al., 2016), such that the port interface is the

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

interface IPinger{ Umple

 void ping(int pIn);

 }

interface IPonger{

 void pong(int pOut);

}

class PingPongPort{

 public out Integer pingPort; // require port

 public in Integer pongPort; // provide port

 [pingPort]

 active void ping(int num) {

 pongPort(num + 1);

 }->void logPortData {

 cout <<"CMP 1 : Ping Out data = "

 << pOut1 << endl;

 }

 [pongPort]

 active void pong(int num) {

 pingPort(num + 1);

 }->void logPortData {

 cout <<"CMP 1 : Pong Out data = "

 << pOut1 << endl;

 }

}

class Pinger {

 isA IPinger;

 port PingPongPort pingPort;

}

class Ponger {

 isA IPonger;

 port PingPongPort pongPort;

 [pongPort, num < 10]

 active void pong(int num) {

 pingPort(num + 1);

 }

}

class PingPong {

 Pinger cmp1;

 Ponger cmp2;

 Integer startValue;

 after constructor {

 // Initiates communication in the constructor

 cmp1->ping(startValue);

 }

 cmp1.pingPort -> cmp2.pongPort;

}

Snippet 5: Case study.

interaction point communicating with other

components (Bauer, Hennicker, & Legay, 2013).

The example encompasses many features reported

in this paper, such as compound ports, constraints,

redefinition, and peer-to-peer communication.

Figure 6: Structure diagram of the ping-pong example.

In Snippet 5, we use the complex port features

(Lines 9-28), such that there are two interfaces,

IPinger (Lines 1-3) and IPonger (Lines 5-7).

Pinger does not redefine the ping port, meaning

that the basic implementation defined in the complex

port will be used (Line 15). On the other hand, Ponger

redefines the pong port (Lines 38-40), by adding a

constraint to ensure that the message propagation will

go back and forth between Pinger and Ponger

instances, until the count reaches 10 (Line 38).

The communication paradigm is almost solely

peer—to-peer (P2P), except for the fact that Pinger

starts communication, hence it could be considered a

super peer. The communication is initialized between

a single Pinger and Ponger.

6 EVALUATION

We evaluate Umple models that utilize different

features explained in this paper. We use McCabe

cyclomatic complexity (Kan, 2003) and lines of code

(LOC) metrics.

Cyclomatic complexity counts logical conditions

and is a proxy measure for the difficulty of

maintaining and testing different parts of code logic,

which requires cognitive efforts from developers. On

the other hand, LOC is the standard measure of code

size, and is useful because more code to read means

more time is required for understanding it.

We calculate cyclomatic complexity based on

Boolean satisfaction constraints, each of which is

weighted as two. Hence, if there are two constraints,

they will valued as four. The complexity ratio is

calculated as 100 − (𝑈𝑚𝑝𝑙𝑒 𝑀𝑐𝑎𝑏𝑒/𝑀𝑐𝐶𝑎𝑏𝑒) ×
100. We use LocMetrics tool (http://

www.locmetrics.com/) to calculate the cyclomatic

complexity and LOC of the generated code.

The generated code of an Umple model provides

a built-in lightweight library that supports many

features such as distributed communication and

Component-based Modeling in Umple

253

multi-threading. We exclude the generated code of

this library in order to avoid evaluation bias.

Figure 7: LOC comparison.

There is a high statistical significant (𝑝 <
 0.0001 and 𝑡 = 7.4558) in terms of lines of code

reduction between Umple models and the generated

C++ code (Figure 7). The average of reduction is 849

LOC and 96.4%, which is roughly constant meaning

that it is independent from the model size.

The reduction in percentage for six Umple test

models is shown in Figure 8. More details about the

models used in our evaluation are in (Orabi, 2017).

The reduction of cyclomatic complexity averages

about 95.05%. Figure 9 is a doughnut chart showing

the cyclomatic differences between C++ generated

code and Umple in the test models. We can see the

differences between Umple models and the generated

C++ code. Note that for three of the models the

cyclomatic complexity of the Umple code is zero.

A threat to validity of our evaluation is that the

C++ user code might be different from the code

generated by Umple. Some developers may argue that

they may be able to come up with C++ code that is

more compact. However, compact code might in fact

be more obfuscated meaning that it could lead to yet

more complexity.

Figure 8: LOC comparison by percentage.

Figure 9: Cyclomatic complexity doughnut.

7 CONCLUSIONS

Umple provides the major features required for

component-based development. Our focus was on

showing how development can be simplified using

Umple. Specifically, we showed our protocol-free

workflow, in which protocols are inferred from the

definitions of ports, components, connectors,

interfaces, and state events.

We discussed how we extended Umple to

overcome many of the limitations in existing

modeling tools that lack the support for many

composite structure features or tend to have

complicated workflows (Orabi et al., 2016) due to, for

instance, needing to additionally define protocols.

We showed a component-interface-based case

study, which used a number of composite structure

features. The lines of C++ code generated from this

use case is more than 2700, as compared to the Umple

model that consists of only 54 lines.

In our evaluation, we used a number of Umple

models that utilized the composite structure features

discussed in this paper. We used both McCabe

cyclomatic complexity and lines of code (LOC)

metrics to assess the extent to which cognitive effort

can be saved when using Umple as opposed to C++.

For future work, we will conduct an empirical

evaluation, in which developers of different levels of

expertise will use Umple. Based on which, we will be

able to assess the usability of the composite structure

features Umple.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

254

REFERENCES

AUTOSAR. (2014). Release 4.2 Overview and Revision

History. Retrieved January 1, 2016, from

https://www.autosar.org/documents/

Badreddin, O., Forward, A., & Lethbridge, T. C. (2014).

Improving Code Generation for Associations:

Enforcing Multiplicity Constraints and Ensuring

Referential Integrity. SERA (selected papers) (Vol.

430). https://doi.org/10.1007/978-3-642-30460-6.

Badreddin, O., Lethbridge, T. C., & Forward, A. (2014). A

Test-Driven Approach for Developing Software

Languages. In MODELSWARD 2014, International

Conference on Model-Driven Engineering and

Software Development (pp. 225–234). SCITEPRESS -

Science and and Technology Publications.

https://doi.org/10.5220/0004699502250234.

Bauer, S., Hennicker, R., & Legay, A. (2013). Component

Interfaces with Contracts on Ports. Formal Aspects of

Component Software. FACS 2012. Lecture Notes in

Computer Science (Vol. 7684). Springer, Berlin,

Heidelberg. https://doi.org/10.1007/978-3-642-35861-

6_2.

Grady Booch, James Rumbaugh, I. J. (2005). Unified

Modeling Language User Guide. Addison-Wesley

Professional.

Kan, S. H. (2003). Metrics and Models in Software Quality

Engineering. Addison-Wesley.

Lakkimsetti, S. K. (2014). Rational Software Architect

Community: Connexis User guide.

Lavender, R. G., & Schmidt, D. C. (1996). Active object:

an object behavioral pattern for concurrent

programming. In Pattern languages of program design

2 (pp. 483–499). Addison-Wesley Longman Publishing

Co., Inc. Boston, MA, USA.

Lethbridge, T. C., Abdelzad, V., Husseini Orabi, M.,

Husseini Orabi, A., & Adesina, O. (2016). Merging

Modeling and Programming Using Umple. In

International Symposium on Leveraging Applications

of Formal Methods, ISoLA 2016 (pp. 187–197).

https://doi.org/10.1007/978-3-319-47169-3_14.

Mallet, F., Peraldi-Frati, M. A., & André, C. (2009). Marte

CCSL to execute east-ADL timing requirements. In

Proceedings of the 2009 IEEE International

Symposium on Object/Component/Service-Oriented

Real-Time Distributed Computing, ISORC 2009 (pp.

249–253). https://doi.org/10.1109/ISORC.2009.18.

Olsen, A., Færgemand, O., Møller-Pedersen, B., Smith, J.

R. W., & Reed, R. (1994). Systems Engineering Using

SDL-92. North Holland (September 28, 1994).

OMG. (2011). UML 2.4.1. Retrieved January 1, 2015, from

http://www.omg.org/spec/UML/2.4.1/

Orabi, M. H. (2017). Facilitating the Representation of

Composite Structure, Active objects, Code Generation,

and Software Component Descriptions for AUTOSAR

in the Umple Model-Oriented Programming Language

(PhD Thesis). University of Ottawa.

https://doi.org/10.20381/ruor-20732.

Orabi, M. H., Orabi, A. H., & Lethbridge, T. (2016). Umple

as a Component-based Language for the Development

of Real-time and Embedded Applications. In

Proceedings of the 4th International Conference on

Model-Driven Engineering and Software Development

(pp. 282–291). SCITEPRESS - Science and and

Technology Publications.

https://doi.org/10.5220/0005741502820291.

Selic, B. (1998). Using UML for Modeling Complex Real-

Time Systems. ObjecTime Limited/Rational Software

Whitepaper, 250–260.

Selic, B., & ObjecTime. (1996). Real-Time Object-

Oriented Modeling (ROOM). In Proceeding RTAS ’96

Proceedings of the 2nd IEEE Real-Time Technology

and Applications Symposium (RTAS ’96) (p. 214).

Smaragdakis, Y., & Batory, D. S. (2000). Mixin-Based

Programming in C++. In Proceeding GCSE ’00

Proceedings of the Second International Symposium on

Generative and Component-Based Software

Engineering-Revised Papers (pp. 163–177).

Component-based Modeling in Umple

255

