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Abstract: Modelling tools provide weak or no support for the rich semantics of composite structure, such as enforcing 

connection constraints and maintaining referential integrity. Tools that generate code from composite 

structure typically depend on excessive and complex internal class representations such as Actor or BasePort. 

In this paper, we present easy-to-comprehend syntax describing composite structure in Umple. We describe 

a novel protocol-free approach that dynamically extracts communication protocols as a way to ease 

component-based modelling, and lead to concise and optimized code generation. We outline Umple 

composite structure features, and the related code generation patterns that resolve difficulties around 

connections and the integrity of multiplicity constraints. 

1 INTRODUCTION 

Composite structure development refers to the 

implementation of concurrent components that 

interact and communicate via ports and connectors 

(Orabi, Orabi, & Lethbridge, 2016). 

In UML, interactions among components are 

handled as messages and signals. There are two 

message-passing actions, one-way call 

(asynchronous call) and calls that block waiting for a 

response (synchronous call). An asynchronous call is 

referred to as a one-way message passing, since it 

does not support a scheduling mechanism to receive 

results. Typically, events are triggered when 

receiving messages by invoking a corresponding 

method. Event handling is often done in a 

component's state machine. 

Handling message flow among ports and 

components usually depends on protocols. Typically, 

defining a protocol involves repetitive steps with 

redundant information to define how in and out 

events are managed. Hence, complexity is added to 

the development process. 

Open-source tools such as eTrice and ArgoUml 

do not support all the major features of composite 

structure (Orabi et al., 2016). On the other hand, 

commercial tools that provide strong support to 

composite structure typically restrict users to certain 

libraries, such as Connexis, which is tightly integrated 

with RSARTE (Lakkimsetti, 2014). 

Motivated by the above, we show how we extend 

Umple, an open-source tool, to support composite 

structure and overcomes such limitations.  

Umple is a text- and model-oriented 

programming language that allows for generative 

programming using many target languages such as 

C++, Java, and PHP (Badreddin, Forward, & 

Lethbridge, 2014; Badreddin, Lethbridge, & 

Forward, 2014; Lethbridge, Abdelzad, Husseini 

Orabi, Husseini Orabi, & Adesina, 2016; Orabi et al., 

2016). Umple implements the core features of UML, 

such as state machines, associations, and attributes. In 

addition, Umple provides other usable features to 

ease development such as traits, mixins, and aspect-

orientation. The selected target language in this paper 

is C++. Umple features can be fully tried and tested 

using the UmpleOnline website (try.umple.org). 

Our key contributions can be summarized as 

follows: 

• We support major composite structure features 

using compact keywords and shortened syntax.  

• We provide generic extensible communication 

and transport definitions to support distributed 

examples. We implement support for the 

TCP/UDP communication protocol and JSON as 

a message interchange format to be the default 

medium for communication among distributed 

components.  
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• We incorporate the active object pattern 

(Lavender & Schmidt, 1996) to extend and 

enable the request-scheduling mechanism. 

• We implement a protocol-free approach, in 

which protocols are inferred from ports, 

connectors, and components. 

• Our implementation works for distributed 

applications, and does not restrict users to certain 

network paradigms or any particular transport 

data format. 

Composite structure features are introduced to 

Umple as a part of this research, as a major step 

towards the development of connected embedded 

devices. 

2 COMPONENT-BASED   

MODELLING AND 

STANDARDS 

Many of the existing component-based modelling 

tools (Orabi et al., 2016) adapt specifications such as 

UML (OMG, 2011), SysML (Mallet, Peraldi-Frati, & 

André, 2009), Specification and Description 

Language (SDL), and Real-time Object-Oriented 

Modelling (ROOM) (Selic & ObjecTime, 1996). 

In our work, we are more inspired by UML, since, 

1) OMG uses UML as the de facto modeling notation 

for object-oriented systems (Grady Booch, James 

Rumbaugh, 2005), and 2) UML is well-known for 

design specification for real-time systems, especially 

embedded devices. As well, in terms of real-time 

modelling, we follow many of the ROOM 

specifications. However, we have an extended the 

active object pattern to handle concurrency (Orabi, 

2017). 

 

Figure 1: SysML diagram types.  

Additional SysML diagrams, as compared to UML are 

highlighted 

SysML provides a lightweight profile of UML in 

terms of aspects such as stereotypes, constraints, and 

tagged values; hence, it can ease and reduce UML 

restrictions, and support a wide range of systems, 

either software or hardware.  

SysML only uses seven of the UML diagrams 

(Figure 1) in addition to two diagram types, 

requirement and parametric (Figure 2). A class 

diagram is called a "block definition" diagram and a 

component (composite) structure diagram is called an 

"internal block" diagram. 

 

Figure 2: UML diagram types. 

SDL’s main purpose is to provide unambiguous 

software system specifications (Olsen, Færgemand, 

Møller-Pedersen, Smith, & Reed, 1994). SDL has 

mainly been used in the modeling of real-time 

communication systems. It provides similar 

functionality as UML but with different terminology 

and notation (Table 1). 

ROOM was developed by ObjectTime and 

introduced in the ObjectTime Developer Tool (ODT) 

(Selic & ObjecTime, 1996). ROOM incorporates a 

variant of Harel's statecharts. In 1996, 

RoomLanguage represented the actor as the primary 

element that communicates with other elements using 

port interfaces. A port is an instance of a protocol 

class that defines the message communication 

between actors. The concept of Actor was later 

referred to as a Capsule in UML-RT. ROOM supports 

hierarchical modeling and incremental refinement of 

complex behaviour.  

Table 1: UML to SDL term mapping. 

UML SDL 

Class Type 

Interface Interface 

Associations Channels 

Operations Signal List 

Variable Attribute 

Sub Block 

Abstract Abstract 

Implementation Process 

Type Gate 

Inheritance Inheritance 
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3 COMPOSITE STRUCTURE IN 

UMPLE 

In Umple, components, ports, and connectors are 

used to describe structural implementation of an 

object, while state machines are used to define its 

behaviour. A component is viewed as an active object 

entity with a unique identifier (UID) that handles its 

own thread of execution and encapsulates its well-

defined behaviour.  

The implementation of composite structure in 

Umple uses an extended version the active object 

pattern (Orabi, 2017). In Umple, an active object class 

is referred to as a component. Communication among 

components is established via ports and connectors, 

with necessary protocols being internally generated 

and hidden from the developer. 

Each component has a public interface, UID, 

internal router, connection type, and transport data 

format. An internal router is used to manage 

components in a distributed system. 

We use template meta-programming (TMP) to 

avoid stub generation, reduce the volume of code the 

user has to write, and provide an extensible 

communication stack (Orabi, 2017; Smaragdakis & 

Batory, 2000).  

The public interface refers to the methods 

exposed for communication, which can be 

synchronous, asynchronous, or future asynchronous. 

They are internally represented as a generic template 

proxy that enables a publish-subscribe mechanism, 

and uses the internal router of their owning class. 

Standard public methods are synchronous, while port 

public interface methods are asynchronous. A special 

case is future asynchronous, which represents an 

active method with a return type. This means that in 

the distributed mode, a component that initiates future 

asynchronous calls is going to receive a scheduled 

response asynchronously from the other component.  

A component handles both inter-process 

communication (IPC) and remote method invocation 

(RMI). The internal routing structure provides the 

essential blocks to ease the building of components 

that can communicate. The internal routing table is 

used to handle send-reply and request-scheduling 

mechanisms between component's internal methods 

and respondents. A component can be either in local 

or distributable state. Being in distributable state 

means that either the component is listening (acting 

as a server) or initiating communication (acting as a 

client). There is no restriction to a specific network 

paradigm or multi-party communication. 

A communication stack provides abstract 

definitions for connection mechanisms and data 

interchange transport formatters. By default, we 

support TCP/IP as a connection mechanism, and 

JSON as a data interchange format. The code can be 

easily extended to support different connection 

mechanisms such as UDP and Bluetooth, and other 

formats such as XML. 

3.1 Components and Parts 

A class becomes a component if it has at least one 

active method, port, or connector. An active method 

is defined as a regular method proceeded by the active 

keyword (Snippet 1 - Lines 2 and 9). When invoking 

an active method, it executes asynchronously, since it 

has its own thread. 
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class A { // A component  Umple 

    active method1 { 

        cout <<"Method without parameters" 

            << endl; 

    } 

} 

 

class B { 

    active method2 (int someParam) { 

        cout << " Parameter value"" <<  

            someParam <<endl; 

    } 

} 

 

class C { 

    A a; 

    B b; 

} 

Snippet 1: An example of a component definition. 

A part, or subcomponent, is an instance of a 

component, and it is owned by the component 

structure of some component. The instance type of a 

part, or subcomponent, can be the same as its owning 

component; this is similar to the programming 

patterns, in which an instance of a class is created in 

that class's definition in places such as constructors, 

attributes, or methods. When a component owns 

multiple parts, it is referred to as a composite 

component. A subcomponent can possibly be 

composite. A component has a composition 

relationship to each class typed by its owned parts. 

 

Figure 3: Multiple instances of different components. 
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In Figure 3, the parts "a" and "b" are instances of 

A and B respectively, and they are owned by a 

component "c" of the type C. The Umple code is in 

(Snippet 1; see definitions of classes A, B, and C). 

This means that C has composition relationships to A 

and B. 

3.2 Ports 

A port in Umple is defined as an attribute, and 

additionally has a direction, which can be in, out, or 

both (specified using the keyword port and meaning 

bi-directional, and also referred to as dual). A port 

attribute is lazy. In Umple, lazy attributes are not 

initialized through their owning class’s constructor. 

The keywords in, out, and port are used to set a 

port direction (Snippet 2 - Lines 2-4). 
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class Component{ Umple 

    in Integer inPort; 

    out Integer outPort; 

    port Integer dualPort; 

    internal in Integer privatePort; 

    in SomeClass someComplexPort; 

    port CompoundPort compoundPort; 

    CompoundPort 

        active compoundPort_ActiveMethods(){ 

             [someInPort] 

             active void handleDefaultDirection(){} 

                 ->handleConjugatedDirection(){ 

             // CompoundPort inversion is as below 

            //out Integer someInPort; 

             //int Integer someOutPort; 

       } 

} 

 

    void active someMethod(){ 

        stateEvent(pIn1 + 1); 

    } 

 

    pIn1Statemachine{ 

        receive{ 

            stateEvent(int val) /{cout<< val;} ->done; 

        } 

        done {} 

    } 

} 

class SomeClass{} 

class CompoundPort{ 

    in Integer someInPort; 

    out Integer someOutPort; 

} 

Snippet 2: Port examples. 

A port has visibility since it is defined as an 

attribute. A private attribute in Umple is defined using 

the internal keyword (Snippet 2 - Line 5); by default, 

an attribute is public (Snippet 2- Lines 2-4). Private 

ports can only be accessed by their owning 

component. 

A port can be simple, complex, or compound. A 

port is simple if its attribute type is simple such as 

string, integer, or double (Snippet 2- Lines 2-5); 

otherwise, it is considered complex (Line 6). A 

compound port consists of a number of subports, as a 

way to encompass a number of events for 

transmission (Lines 7, 8, and 30-33). 

A port attribute type has no restrictions. For 

instance, a port attribute can be typed by a 

component. 

Within a component-based application, 

communication is established among a number of 

components instances. The boundary of instances 

created is managed using class associations, similarly 

to any normal application (Snippet 3 - Line 7). 

Messages propagated will be received by all instances 

associated (Line 23). 

3.3 Connectors 

A connector associates between two ports in order to 

establish a communication channel for data 

transmission. A class is considered a component if it 

has a connector defined, even if this class does not 

own active methods or ports. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

class Client{ Umple 

    in String cp; 

} 

 

class Server{ 

    out String sp; 

    * -- * Client;  //Many to many association 

} 

 

class Sys{ 

    Client c; 

    Server s; 

    s.sp-> c.cp; 

 

    public static void main(int argc, char *argv[]){ 

        Server* server= new Server(); 

        Client* c1= new Client(); 

        Client* c2= new Client(); 

        Client* c3= new Client(); 

        server ->addClient(c1); 

        server -> addClient (c2); 

        server -> addClient (c3); 

        s->sp("Broadcast a message to all instances"); 

    } 

} 

Snippet 3: Basic active objects in Umple. 

The operator "->" is used to define a connector, 
such that the port on the left is the source, and the port 
on the right is the target. A connector can associate 
between ports in the same component (Snippet 4 - 
Line 8) or different components (Lines 24 and 25). 
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The composite structure of "D" defined in Snippet 4 
is visualized in Figure 4 (generated by UmpleOnline). 

A connector can only connect between ports if 
they have opposite directions; i.e. an in port versus 
out port, dual port versus in port, dual port versus out 
port, and dual port versus dual port. 

The notion of "->" that we use to define 
associations and connectors can be confusing to 
C/C++ developers, since it is exactly the same as 
using pointers (Snippet 4 - Line 21). For future 
research, we will look into trying to reduce the need 
to having to use pointers in target-language code such 
as methods that the users embed in the Umple code. 

 

Figure 4: Composite structure of connected components. 
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class A{ Umple 

    out Integer outPort; 

} 

 

class B{ 

    in Integer inPort ; 

    out Integer outPort; 

    inPort -> outPort; 

} 

 

class C{ 

    in Integer inPort; 

} 

 

class D{ 

    A a; 

    B b; 

    C c; 

 

    void active someMethod(){ 

        a->outPort(120); // Send a signal of 120 

    } 

 

    a.outPort->b.inPort; 

    b.outPort->c.inPort; 

} 

Snippet 4: Connector examples. 

3.4 Protocols and Our Protocol-Free 
Approach 

Typically, an active method uses port attaches to 

listen to port events (Snippet 5 – Line 13, 21, and 38). 

In our protocol-free approach, a port attachment holds 

the information about incoming and outgoing ports, 

which makes it possible to generate protocols based 

on such information. 

In terms of code generation, a protocol class is 

generated to handle communication for each 

component via its ports. When a port type is complex, 

we apply an appropriate serialization/deserialization 

technique. A port value is serialized into an 

intermediary object transmitted in the form of 

messages. When messages transmitted are received, 

they are deserialized back to the original object form. 

Data is sent through connectors as signals. A port 

is expected to be able to receive signals 

simultaneously from different connectors. This 

means that there must be a queue mechanism to 

handle signals appropriately based on their priority 

and/or receiving order. 

In our implementation, we have a priority FIFO 

queue, in which requests are ordered based on their 

priorities (i.e. Snippet 4 - Line 21), and then based on 

their receiving order. 

At the level of the generated code, queuing 

depends on an internally generated helper class, 

MessageService. The utility class MessageService is 

also generated when processing any Umple model 

that uses composite structure features. 

Communicating components can exist in different 

applications or locations. Hence, it was important to 

support buffered message transmission. This is 

handled using a generic API MessageDescriptor we 

implemented, which is also generated as needed. 

MessageDescriptor follows a publisher- subscriber 

pattern. MessageDescriptor and MessageService 

APIs are available in UmpleOnline when generating 

an Umple model that has ports or connectors defined. 

By default, the maximum size of a transfer request 

is 512 Kilobytes. If a message to be transmitted 

exceeds this maximum size, it will be divided into a 

number of smaller chunks, such that each chunk size 

will not exceed that size. When all chunks are 

received, they will be assembled into a message, 

which will be deserialized into the form of the object 

data originally sent. We selected a small maximum 

size in order to make sure that it will not exceed the 

maximum transmission unit (MTU) of a network, 

such that it will take less memory and process fast. 

For future work, we will experiment with other values 

to see which can be better, and investigate whether we 

can adjust the value at the model level. 

MessageService works closely with the 

publisher-subscriber API existing in 

MessageDescriptor. Upon receiving incoming events, 

new messages will be created based on a subscriber 

list, which contains the active methods subscribed. 

The created messages will be added to the message 

queue using the MessageService API. 
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4 PORT TYPES 

A port has a type that can be either conjugated or 

base. By default, a port is base (Snippet 2 - Lines 2-

6). A conjugated port (Lines 11 and 12) can be 

alternatively referred to as an invert port. For 

instance, a conjugated in port also acts as an out port, 

and a conjugated out port also acts as an in port. 

Conjugation is only used with compound ports. When 

a port is compound, its conjugated version will have 

all of the subports inverted, as commented in (Snippet 

2 - Lines 13-15). 

An in or dual port can additionally be a relay or 

end port (Selic, 1998). Relay and end ports are called 

external ports. Any out port is a relay port (Snippet 4- 

Lines 2 and 7). Ports that propagate signals to other 

ports are considered relay ports (Line 6). Signal 

propagation stops at end ports (Lines 12).  

The process of signal propagation changes 

whether a port is a service or nonservice port, and 

whether it is a behaviour or nonbehaviour port. 

A service port expects to receive inputs from, or 

send outputs to, its environment. Service ports are 

drawn on the boundary of its owning part. In Umple, 

public ports are considered service ports (i.e. Snippet 

2 - Lines 2-4). 

On the other hand, nonservice ports are only 

visible within its part, and thus they are drawn within 

the internal region of its part. In Umple, private ports 

are considered nonservice (Snippet 2 - Line 5).  

A nonservice port can still receive or send signals 

to or from other components via another relay port, 

which will act as an intermediary port.  

When a port triggers a state machine event, it is 

considered a behaviour port (i.e. Snippet 2 - Lines 19-

28). 

A port cannot be nonservice and nonbehaviour at 

the same time. On the other hand, a service port can 

possibly be a behaviour or nonbehaviour port. 

Associations are typically used to manage the 

number of port instances in a class. A replicated port 

means that this port can have multiple instances. 

When a port is connected to other ports, it is referred 

to as a wired port. An unwired port can still connect 

dynamically to other ports during runtime. 

Table 2 summarises the different types of ports. 

Figure 5 shows ports of different types visualized 

using UmpleOnline. We follow the notations in 

specifications such as UML (OMG, 2011) and 

AUTOSAR (AUTOSAR, 2014).  

When a port is a service port, it is drawn on the 

boundary of the composite structure; otherwise, it is 

drawn within the composite. Hence, all ports in Figure 

5 are service ports, since they are all drawn on the 

boundary of their owning component. 

 

Figure 5: Visualization of different port types using Umple. 

We recognize wired ports if they are connected to 

other ports via connectors; Figure 4 for instance. 

We distinguish between in and out ports using the 

crescent symbol, such that the open end of the 

crescent refers to the out port, and the closed end 

refers to the in port (Orabi et al., 2016). 

At the moment, we do not visually distinguish 

between behaviour and nonbehaviour ports, since this 

will require parsing users' code to check whether 

there are invocations to state events (Snippet 2 - Line 

20). For future work, we will assess the necessity of 

supporting this feature. 

Table 2: Port types. 

Type Description 

Behavior Triggers state machine events 

Nonbehaviour Does not propagates signals via state 

machines 

Complex Encompasses a number of attributes 

rather than a single attribute as in simple 

ports 

Base  A port designed to send out signals 

Conjugated A port that also defines an inverse port 

that operates in the reverse manner 

Service Used to communicate between ports in its 

environment and ports in other 

environments; i.e. public or external 

Nonservice Only visible within its part; i.e. private 

Replicated Can have multiple instances. 

In  Provides a service for other ports. It can 

be conjugated, replicated, or service 

Out Requires a service from other ports. It can 

be conjugated, replicated, or service 

Wired Means that a port is connected to other 

ports at the model level 

Unwired Means that a port is not connected to other 

ports at the model level, but possibly can 

still connect at runtime 
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5 CASE STUDY 

In this section, we demonstrate a case study (Snippet 

5) that follows component-based and event driven 

programming. In this case study (Figure 6), we report 

on a component-interface version of the one in (Orabi 

et al., 2016), such that the port interface is the  
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interface IPinger{ Umple 

   void ping(int pIn); 

   } 

 

interface IPonger{ 

   void pong(int pOut); 

} 

 

class PingPongPort{ 

   public out Integer pingPort;  // require port 

   public in Integer pongPort;  // provide port 

 

    [pingPort] 

   active void ping(int num) { 

      pongPort(num + 1); 

   }->void logPortData { 

      cout <<"CMP 1 : Ping Out data = " 

            << pOut1 << endl; 

   }  

 

    [pongPort] 

   active void pong(int num) { 

      pingPort(num + 1); 

   }->void logPortData { 

      cout <<"CMP 1 : Pong Out data = " 

         << pOut1 << endl; 

   } 

} 

 

class Pinger { 

   isA IPinger; 

   port PingPongPort pingPort; 

} 

 

class Ponger { 

   isA IPonger; 

   port PingPongPort pongPort; 

    [pongPort, num < 10] 

   active void pong(int num) { 

      pingPort( num + 1); 

   } 

} 

 

class PingPong { 

   Pinger cmp1; 

   Ponger cmp2; 

   Integer startValue; 

 

   after constructor { 

      // Initiates communication in the constructor 

      cmp1->ping(startValue); 

   } 

   cmp1.pingPort -> cmp2.pongPort; 

} 

Snippet 5: Case study. 

interaction point communicating with other 

components (Bauer, Hennicker, & Legay, 2013). 

The example encompasses many features reported 

in this paper, such as compound ports, constraints, 

redefinition, and peer-to-peer communication.  

 

Figure 6: Structure diagram of the ping-pong example. 

In Snippet 5, we use the complex port features 

(Lines 9-28), such that there are two interfaces, 

IPinger (Lines 1-3) and IPonger (Lines 5-7).  

Pinger does not redefine the ping port, meaning 

that the basic implementation defined in the complex 

port will be used (Line 15). On the other hand, Ponger 

redefines the pong port (Lines 38-40), by adding a 

constraint to ensure that the message propagation will 

go back and forth between Pinger and Ponger 

instances, until the count reaches 10 (Line 38). 

The communication paradigm is almost solely 

peer—to-peer (P2P), except for the fact that Pinger 

starts communication, hence it could be considered a 

super peer. The communication is initialized between 

a single Pinger and Ponger. 

6 EVALUATION 

We evaluate Umple models that utilize different 

features explained in this paper. We use McCabe 

cyclomatic complexity (Kan, 2003) and lines of code 

(LOC) metrics. 

Cyclomatic complexity counts logical conditions 

and is a proxy measure for the difficulty of 

maintaining and testing different parts of code logic, 

which requires cognitive efforts from developers. On 

the other hand, LOC is the standard measure of code 

size, and is useful because more code to read means 

more time is required for understanding it. 

We calculate cyclomatic complexity based on 

Boolean satisfaction constraints, each of which is 

weighted as two. Hence, if there are two constraints, 

they will valued as four. The complexity ratio is 

calculated as 100 − (𝑈𝑚𝑝𝑙𝑒 𝑀𝑐𝑎𝑏𝑒/𝑀𝑐𝐶𝑎𝑏𝑒) ×
100. We use LocMetrics tool (http:// 

www.locmetrics.com/) to calculate the cyclomatic 

complexity and LOC of the generated code.  

The generated code of an Umple model provides 

a built-in lightweight library that supports many 

features such as distributed communication and 
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multi-threading. We exclude the generated code of 

this library in order to avoid evaluation bias.  

 

Figure 7: LOC comparison. 

There is a high statistical significant (𝑝 <
 0.0001 and 𝑡 =  7.4558) in terms of lines of code 

reduction between Umple models and the generated 

C++ code (Figure 7). The average of reduction is 849 

LOC and 96.4%, which is roughly constant meaning 

that it is independent from the model size. 

The reduction in percentage for six Umple test 

models is shown in Figure 8. More details about the 

models used in our evaluation are in (Orabi, 2017).  

The reduction of cyclomatic complexity averages 

about 95.05%. Figure 9 is a doughnut chart showing  

the cyclomatic differences between C++ generated 

code and Umple in the test models. We can see the 

differences between Umple models and the generated 

C++ code. Note that for three of the models the 

cyclomatic complexity of the Umple code is zero. 

A threat to validity of our evaluation is that the 

C++ user code might be different from the code 

generated by Umple. Some developers may argue that 

they may be able to come up with C++ code that is 

more compact. However, compact code might in fact 

be more obfuscated meaning that it could lead to yet 

more complexity. 
   

 

Figure 8: LOC comparison by percentage. 

 

Figure 9: Cyclomatic complexity doughnut. 

7 CONCLUSIONS 

Umple provides the major features required for 

component-based development. Our focus was on 

showing how development can be simplified using 

Umple. Specifically, we showed our protocol-free 

workflow, in which protocols are inferred from the 

definitions of ports, components, connectors, 

interfaces, and state events. 

We discussed how we extended Umple to 

overcome many of the limitations in existing 

modeling tools that lack the support for many 

composite structure features or tend to have 

complicated workflows (Orabi et al., 2016) due to, for 

instance, needing to additionally define protocols. 

We showed a component-interface-based case 

study, which used a number of composite structure 

features. The lines of C++ code generated from this 

use case is more than 2700, as compared to the Umple 

model that consists of only 54 lines. 

In our evaluation, we used a number of Umple 

models that utilized the composite structure features 

discussed in this paper. We used both McCabe 

cyclomatic complexity and lines of code (LOC) 

metrics to assess the extent to which cognitive effort 

can be saved when using Umple as opposed to C++. 

For future work, we will conduct an empirical 

evaluation, in which developers of different levels of 

expertise will use Umple. Based on which, we will be 

able to assess the usability of the composite structure 

features Umple. 
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