
Exploring BIM Data by Graph-based Unsupervised Learning 

Chaoyi Jin1, Minyang Xu1, Lan Lin2 and Xiangdong Zhou1 

1School of Computer Science, Fudan University, Shanghai, China 
2School of Electronics and Information Engineering, Tongji University, Shanghai, China 

 

Keywords: Graph Propagation, Unsupervised Learning, BIM Data Mining. 

Abstract: This paper presents an unsupervised learning method for mining the Industry Foundation Classes (IFC) based 

Building Information Modelling (BIM) data by exploring the inter-relational graph-like building spaces. In 

our method, the affinity propagation clustering algorithm is adapted with our proposed feature extraction 

algorithm to get exemplars of certain spaces with similar usage functions. The experiments are conducted on 

a real world BIM dataset. The experimental results show that some build spaces of typical usage functions 

can be discovered by our unsupervised learning algorithm.  

1 INTRODUCTION 

Modelling and accessing knowledge of architecture 

design from the BIM (Building Information 

Modeling) data is an important issue for construction 

industry and some other related field including 

phycology, sociology, and behaviour learning. Even 

with Computer Aided Design, it is not easy to achieve 

general knowledge extraction from construction data. 

According to Space Syntax Theory (Hillier and 

Hanson, 1989), such systems like buildings should be 

regarded as discrete systems, in which indivisible 

individual components act on each other through 

description retrieval mechanism to form the rule of 

the whole; however, the description is not carried 

within these components jointly or separately. As a 

result, the interactions between building components 

should be learned to obtain knowledge from building 

models. 

The recent adoption of Building Information 

Modelling (BIM) makes it easier to deal with 

buildings as a whole (S. Azhar al., 2008). In BIM 

representation, building related information is kept in 

interlinked context rather than isolated entities. It 

contains a large amount of semantic information 

which is all machine-interpretable. In this paper, we 

address the problem of extracting knowledge from 

spaces within buildings based on the IFC (Industry 

Foundation Classes, de facto standard for BIM data) 

representation (T.M. Froese al., 1999). Our 

techniques can be applied for retrieval, reference, and 

evaluation of designing, as well as generative design 

(C. Soddu, 2006). 
IFCSPACE is defined in IFC as an area or volume 

bounded actually or theoretically. IFCSPACEs are 
designated to provide for certain functions within a 
building. Our data mining is focused on the 
relationship between building space structure and 
functions. In general, the relationship between 
building structure and functions is a philosophic 
problem. Philosophers have proposed different 
theories to interpret it, but it is commonly accepted 
that the relationship does exist. Therefore, we take 
Space Syntax Theory as our main basis, and develop 
our spatial knowledge extraction model with machine 
learning techniques.  

Our main contributions: We present a novel 

machine learning algorithm to obtain functional 

knowledge from building space structures. We extract 

the physical properties of each space and their 

boundary relationships in BIM model (using  IFC 

standard )  and build several boundary graphs with 

space boundary relationships. In our algorithm the 

properties of each space propagate along the edges of 

these graphs, we employ mathematical moments to 

make the result of propagation into new features. 

Based on the graph representation of building 

structure, we adapt the affinity propagation algorithm 

to perform building space clustering analysis, in order 

to get representative samples of spaces within one or 

several multi-spatial buildings.  
To the best of our knowledge, this is the first 

approach that is able to automatically learn spatial 
design knowledge from IFC based BIM data. The 
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experiments are conducted on real building BIM 
models. The experimental results show that our 
method is very effective for building data mining, 
especially to explore the relationship between the 
building space structures and the functions. 

2 RELATED WORK  

2.1 Machine Learning on Construction 

Contemporarily, machine learning has been applied 

in construction and more and more attentions are 

attracted from the research and industry communities. 

With monitoring devices and systems, machine 

learning methods are taken upon the tasks of 

architecture maintenance. G. Li al. (G. Li al., 2017) 

adopt SVM in their noise elimination algorithm for 

the task of bridge crack recognition and evaluation. 

W. Z. Taffese and E. Sistonen (W. Z. Taffese and E. 

Sistonen, 2017) conclude the recent advances and 

future directions of machine learning for durability 

and service-life assessment of reinforced concrete 

structures. Back-propagation neural network 

(BPNN), radial basis function neural network 

(RBFNN), SVM, and decision tree are all adopted in 

carbonation depth prediction, chloride prediction and 

evaluation, and coupled transport processes in 

concrete. E. Rodrigues al. (E. Rodrigues al., 2017) 

use hierarchical agglomerative clustering algorithm 

to cluster architectural floor plans. They present 4 

sorts of shape representations of 2-D floor plans, and 

compared them with the clustering results. 

Learning from building data  has been studied in 

several perspectives. A. Henn al. (A. Henn al., 2011) 

present a classifier on building types, which is based 

on SVM. They use coarse low resolution data that is 

wildly available as their dataset, manually labelled 

them, extracted about thirty features via the functions 

of spatial analysis in spatial databases with some 

necessary pre-processing, and classified these 

obtained samples with SVM. Z. Lun al. (Z. Lun al., 

2015) introduce a structure-transcending style 

similarity measure on three-dimensional models. 

They translate the presence of similarly shaped, 

salient, geometric elements into an algorithmic 

measure. It works well when aligned with human 

perception of stylistic similarity. T. Krijnen al. (T. 

Krijnen al., 2015) investigate the application of 

several machine learning method on BIM models. 

They use unsupervised learning to detect outliers of 

the geometrical attributes of the elements in a model, 

and supervised neural networks to classify floor plans 

with 8 manual features. 

2.2 Building Space Modelling 

There are a lot of theories of modelling building 

space. The most inspiring proposition for automatic 

building space classification is the theory of space 

syntax (B. Hillier, J. Hanson, 1984; B. Hillier, 2015). 

The theory of space syntax includes a lot of 

topological properties such as depth measurements, 

which enable quantitative analysis on the features of 

space form and functioning. T. Markus and D. 

Cameron (T. Markus and D. Cameron, 2002) propose 

a five-step procedure of the generation of building 

space classification, in which the original discourse 

comes to categories, and then to labels, to space and 

form, while finally to the actual use and management 

of the building space. In practice, S. Daum al. (S. 

Daum al., 2014) present an approach to generating 

building fingerprints automatically based on a spatial-

semantic query language for BIM. They retrieve 

accessibility and adjacency relationships among 

spaces in IFC models, therefore build an accessibility 

graph and an adjacency graph between spaces within 

a building model.  

3 BUILDING SPACE 

KNOWLEDGE EXTRACTION  

In this section, we present our interactive algorithm to 

extract features of building spaces. Our method takes 

IFC files as the input. We extract IFCSPACEs and 

their related properties. We learn the features of 

different dimensions from the space boundary graphs. 

These features can be integrated with clustering 

methods to mining the knowledge of building space 

design. 

3.1 Properties and Boundary Graphs 
of IFCSPACEs 

The IFC data is organized in a structure similar to a 

tree. The root node is an object of IFCPROJECT, 

while the other information is distributed in its direct 

and indirect child nodes. IFCSPACEs are the objects 

on the lowest layer of spatial structure, with an 

unfixed number of defining properties. Figure 1 

shows the position of IFCSPACEs in the tree-like 

structure of IFC data, and how their defining 

properties are placed. Besides these properties, there 

are also inter-IFCSPACE boundary relationships in 

the structure. Each boundary is contributed by an 

IFCSPACE and an IFCELEMENT such as an 

IFCDOOR, an IFCWALL or an 
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IFCVIRTUALELEMENT. In other words, it is an 

IFCELEMENT that separates two IFCSPACES. By 

combining boundaries sharing the same separating 

IFCELEMENT, we can reduce IFCSPACEs along 

with their boundary IFCELEMENTs into several 

boundary relationship graphs. Primarily, each type of 

space boundary element corresponds to a graph alone; 

and in addition, we sum up all types of boundary 

elements to make the adjacency relationship graph on 

one hand, while select the types through which the 

neighbouring space is accessible to make the 

accessibility relationship graph on the other hand. 

Figure 2 and Figure 3 show the extraction of 

adjacency and accessibility relationships, and Figure 

4 is an example set of spaces and their adjacency and 

accessibility relationship graphs. 

 

Figure 1: IFCSPACE in the IFC Tree-like Structure. 

 

Figure 2: Extraction of Adjacency Relationships. 

 

Figure 3: Extraction of Accessibility Relationships. 

 

Figure 4: An Example Set of Spaces and Their Adjacency 

and Accessibility Relationship Graphs. 

3.2 Count Propagation 

According to various theories, building spaces 

interact with each other on determining their 

functions. Therefore, we build our feature extraction 

mechanism on the inter-relationships among 

IFCSPACEs. With each space corresponding to a 

node in every boundary relationship graph, we let the 
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parameters of each space propagate along the edges. 

The propagation within boundary relationship graphs 

carries semantic meanings to each of the nodes, which 

can be summarized in 2 dimensions: 

adjacency/accessibility and count/property. These 2 

dimensions come up with 4 combinations: adjacency 

count propagation, accessibility count propagation, 

adjacency property propagation, and accessibility 

property propagation. 

In count propagation, each space contributes a 

count to its neighbouring space. Through different 

boundary relationship types (edges in the graphs), 

different semantic information is passed to the 

neighbours: through IFCWINDOW edges, meaning 

about openness is transported to the neighbouring 

spaces; through IFCWALLSTANDARDCASE 

edges, meaning about privacy is transported to the 

neighbouring spaces; through IFCCURTAINWALL 

edges, the transported meaning to the neighbouring 

spaces is sorts of openness and privacy, to some 

extent; through IFCSLAB edges, something 

concerning vertical relationships such as noise 

transmission and water seepage are transported; and 

through total adjacency edges, meaning about the 

complexity is transported to the neighbouring spaces. 

The receiving space sums up the counts it receives. 

We keep the radius of all types of adjacency 

propagation to 1 step, which means only the direct 

neighbours will be affected by one space. However, 

the radius of accessibility propagation is designed to 

be larger. In the space graph, semantic meanings 

transport through accessible boundaries, from one 

space to another, and then to the next. They may 

attenuate or diffuse in the graph. The accessibility 

propagation could be summarized as the expression 

below: 

DSR                                  (1) 

Where S stands for the vector of source 

parameters of propagation, R stands for the vector of 

received parameters, and D is the matrix of diffusion 

functions. We learn D from the structure of the 

accessibility graph. 

 

3.3 Propagation of Spatial Properties 

By assigning spatial properties to S in expression (1), 

we have some other dimensions of propagation. We 

select 2 of the main properties to be propagated: 

Space area and Space Circumference, for the reason 

that they are various in all the spaces, and expressive 

in space characteristics. Instead of summing up 

received parameters simply, our receiving function is 

defined with mathematical moments: 

        )(sMomentM ii  .                      (2) 

We select moment ordinals from 1 to 6. These 

received parameters are mapped on different 

dimensions of features describing the space. We 

finally have features of 197 dimensions, including 4 

simple features which are directly space properties, 

and 193 other complex features as the result of inter-

spatial parameter propagation. All the features are 

shown in  Table1 and Table 2.  

3.4 Affinity Propagation Clustering 

Similar to the manner of parameter propagation in the 

boundary graphs making space features, affinity 

propagation is a method of clustering data with graph-

based message passing mechanism (Brendan J. Frey 

and Delbert Dueck, 2007). Besides, affinity 

propagation simultaneously consider all samples as 

the candidate cluster centers instead of picking up 

start points randomly and deciding number of clusters 

at the beginning of clustering, so we adapt and 

integrateit in our unsupervised algorithm, 

propagating parameters about features between 

building spaces, to discover potential knowledge of 

them. Moreover, affinity propagation choose a 

sample itself as an exemplar to represent one cluster, 

thus we can explore the characteristics of a type of 

spaces by analysing their exemplar. Therefore, we 

apply affinity propagation on our extracted features. 

Affinity propagation starts from the similarity 

matrix S, where  

2
),( ki XXjiS                       (3) 

And exchange 2 sorts of messages between 

samples, availabilities and responsibilities. The 

responsibility matrix R and the availability matrix A 

iterate crossly according to the expressions below to 

identify exemplars: 
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Table 1: Simple Features. 

Table 2: Complex Features. 

  

 
Figure 5: Affinity Propagation between Spaces. 

Figure 5 illustrates the process where affinity 

propagation works following feature extraction 

among spaces . 

4 EXPERIMENT 

In this section, we use the analysis of our clustering 

results on the data of a real building to demonstrate 

how knowledge of building spaces is extracted from 

BIM data. We use both label examination and 

exemplar evaluation to assess our experiment. Two 

major discoveries are made by our experiment: 
1)Dense and large cluster centers are inclined to 

have the same/similar labels,hence they can be 
harnessed to detect mislabelling; and 

2)Typical usages of the building spaces can be 
extracted from the clustering results beyond/without 
space labels. 

 

Space area Extracted from IfcPropertySingleValue“area” 

Space 
circumference 

Extracted from IfcPropertySingleValue“circumference” 

Space height Extracted from IfcPropertySingleValue“room height” 

Floor level Extracted from IfcPropertySingleValue“level” 

 Numbers of boundaries of this 
space 

 

Mathematic moments of geometric 
measurements of the spaces sharing 
boundaries with this space 

Each type of 
boundary alone 
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Figure 6: The Average Similarity between Nearest Samples to the Exemplars of 5 selected representative cluster. 

4.1 Dataset 

The dataset contains a 3D building models containing 

a number of details of the indoor spaces in BIM, 

which applies IFC Architecture. Our data consists of 

595 spaces from a 20-storey building (Building A). In 

IFC data, each IFCSPACE has a longname, which 

marks the usage of the space. We use the longnames 

of the IFCSPACES in our dataset as the labels of 

spaces.There is quite a variety of labels in the samples 

from Building A, with a fair distributionon each type.  

4.2 Label Examination 

We have applied our approach on Building A, which 

has 595 spaces. By setting preference in affinity 

propagation to -50, 11 clusters are obtained. 

Longname labels of the samples are used to examine 

the result of clustering. Our goal is to find exemplars 

representing typical functions of building spaces, thus 

we use the exemplars of each cluster to stand for a 

type of function; besides, we believe the samples with 

most similarities with the exemplars are also sorts of 

representatives of the cluster. 

Figure 6 shows the density and the scale of the 

cluster center near exemplars. The higher the 

similarity curve locates, the denser the cluster center 

is; the earlier the similarity curve goes down, the 

smaller the cluster center turns to be. The cluster 4 is 

a typical that has both dense and large center, while 

cluster 10 stands for those who have dense centers 

small in size. Cluster 8 and 6 have less dense but large 

centers. Cluster 5 is rather worse judged by these 2 

measurements. Figure 7 shows the composition of 

space usage labels of the first 8 samples near 

exemplars including exemplars themselves in each 

cluster. The cluster 4, 2 and 9 are dominated by 

faculty offices, department offices, and unlabelled 

rooms. Chief offices and director offices are the 

theme of the cluster 11. The cluster 6 is majorly 

smoking areas, while the other clusters has a more 

diverse composition of their cluster centers. This 

proves our evaluating criterion of clustering: the 

denser and larger the cluster center is, the better the 

exemplar represents spaces of a certain function. 

  

 

Figure 7: The Composition of Space Usage Labels of 5 Representative Cluster. 
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4.3 Exemplar Evaluation 

Our unsupervised learning method is designed to find 

a way describing the hidden structure of building 

spaces, so other than label examination, it is more 

appealing to expect what could be learned without 

labels or beyond labels, expressing undiscovered 

knowledge about building spaces. By studying 

exemplars and the samples with most similarities in 

their clusters, we get several typical building spaces 

from our learning results. 

The 3 typical functional spaces below correspond 

to the cluster 11, 4, and 6, which enjoy dense and 

large cluster centers. Difference between “offices” is 

found between cluster 11 and 4, as the difference 

between senior offices and open offices. On the other 

hand, it is found that chief offices and director offices 

share a lot of similarities, for which they could be 

considered as a same type on some occasions. And 

the cluster 6 tells us there is something common 

among elevator rooms, smoking areas, corridors, and 

open working spaces. These offer us the knowledge 

of demarcating spatial functions rather than labels. 

With the clustering we  can predict the function or 

guide the usage of unlabelled spaces: for instance, the 

most of the unlabelled room in cluster 9 can be 

assigned the labels of a sort of public space.The 

density and large scale of its cluster center enable us 

to specify the unlabelled spaces in it according to their 

labelled cluster mates. Generally, we study the 

exemplar and the samples close to it obtained in each 

cluster, choosing the features they have in common 

most (least distances on those dimensions) as their 

most salient structural characters.  

 

The mining results: 

 

Senior Offices 

Our method has found some extent of 
isomorphism between the 17th floor and the 18th floor 
of Building A in our data set. As shown in Figure 8, 
the spaces along the right curve are all spaces 
functioning as senior offices. They are quite 
independent, with only one door connecting with the 
outer spaces, high floor levels and windows providing 
a good sight and mood, and close distances to 
elevators through the corridor. Independence, sight, 
and convenience can thus be employed as the key 
words describing this type of usage.  

 

Open Offices 

Some offices are designated to opening usages, 

e.g. public visits, agencies, and receptions. Such open 

offices which mostly stand for this are shown in 

Figure 9 marked in black. They have larger degrees 

of adjacency and accessibility, which imply 

openness. 

 

 

Figure 8: Senior Offices. 

 

Figure 9: Open Offices. 

Circulation Spaces 
 
Circulation spaces are distributed in a number of 

stories, with various sizes, but all public. They can be 
accessible from a lot of neighbouring spaces, and 
function as the connecting, transitional, and sorts of 
recreational (such as smoking area) spaces. Some 
samples of this cluster are shown in Figure 10 marked 
in red, including elevator rooms, smoking areas, 
corridors, and small open working areas.  
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Figure 10: Circulation Spaces. 

5 CONCLUSIONS  

We present a novel machine learning method for BIM 

model mining. An interactive algorithm is proposed 

to get features of inter-relational graph-like building 

spaces, and these parameters are propagated along 

edges of the graph to generate features. These features 

are expressive of describing the structure of building 

spaces. We apply the unsupervised affinity 

propagation clustering algorithm to mining the 

exemplars of typical spatial functions based on the 

above feature representation. To the best of our 

knowledge, this is the first work that intends to 

mining the IFC based BIM data for the relationship 

between functional spaces and architecture design. 
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