
Concurrent Programming using Umple

Mahmoud Husseini Orabi, Ahmed Husseini Orabi and Timothy C. Lethbridge
School of Electrical Engineering and Computer Science, University of Ottawa,

800 King Edward Avenue, Ottawa, Canada

Keywords: Umple, Active Object, Composite Structure, UML.

Abstract: UML standards lack systematic solutions that can handle concurrency and time constructs in a single unified

notation. In this paper, we integrate concurrency as a part of Umple, a combined modelling and programming

language. Our extensions can help ease component-based development of real-time, distributed, and

embedded applications. The work, which is based on an extended implementation of active object, enables

better validation of systems, and improves usability from the developer’s perspective. We describe the syntax

and semantics of our Umple extensions, and also show how the constructs are transformed into C++. After

that, we evaluate our work qualitatively, by comparing Umple with other specifications that focus on time as

key; we show that Umple gives more flexibility than UML and MARTE. We also evaluate our work

quantitatively using LOC and cyclomatic complexity metrics, showing that a developer would have to write

many fewer lines of code when using Umple than when programming directly in C++.

1 INTRODUCTION

Many of the existing programming languages tend to
be limited in how to handle concurrency easily, and
hence require additional third-party libraries. Even
though some languages such as C++, support
concurrency, they tend to have challenges related to
different compiler vendors, standards, and thread
APIs for operating systems and embedded devices.

Concurrency results in abstract patterns of
interactions, which seem best handled by integrating
it with model objects, and also with the syntax of
programming languages. The most elemental such
patterns are synchronous and asynchronous method
invocation.

Prior to the work reported in this paper, Umple
(Orabi, Orabi, and Lethbridge, 2016) supported
concurrency in three forms, basic active objects, do
activities, and queued state machines (QSM)
(Alghamdi, 2010). Active objects and do activities
spawn threads, separate from their owning class's
thread, to execute some action code. An active object
is activated from its class constructor, while a do
activity is activated while in a state machine state. A
QSM has a separate threat to enqueue events from the
thread that processes events.

The prior version of Umple omitted asynchronous
method invocation and time constructs such as delay,
polling, and timeout.

In this paper, we describe how we extend
concurrency in Umple to support 1) data isolation, 2)
thread communication through asynchronous
messages, 3) processing each task one at a time to
satisfy run-to-completion semantics, eliminating
concurrency issues, and 4) a generic approach that
covers operations, state machine events, and actions.

We refer to our extensions as the active features,
as they are derived from the active object pattern
(Lavender and Schmidt, 1996), which enforces
concurrency best practices.

We distinguish between active and passive (Ober
and Stan, 1999) in terms of their capabilities to
execute in their own thread, and to initiate a control
activity, such that each method is executed internally
and sequentially. An active Umple class means that
the class must have at least one active method.

In Umple, development can be performed at
different levels, model or action code. At the model
level, the users write their model in Umple syntax,
while in the action code, the users write the code in a
selected target language. Languages that Umple
supports include Java, C++, and PHP. In this paper,
our target language is C++.

We will highlight the possible levels at which
active can be applied, such as methods and action
code. After that, we will discuss the basic flow of
active objects, which consists of several actors such
as proxies, messages, and schedulers.

Orabi, M., Orabi, A. and Lethbridge, T.
Concurrent Programming using Umple .
DOI: 10.5220/0006713005750585
In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), pages 575-585
ISBN: 978-989-758-283-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

575

Our contributions related to concurrency can be
summarized as follows:

• The implementation of the features related to

concurrency in Umple, including code

generation for real-time applications.

• Introducing an active object pattern that extends

the one introduced by Lavender (Klein, Lu, and

Netzer, 2003; Lavender and Schmidt, 1996). Our

pattern aims to enhance communication among

active objects as in the points below.

• Simplifying active features at the action code

level such as future (Cplusplus.com, 2016), and

other time constructs, using simple Umple

keywords.

• Easy handling of complex time constraints

related to asynchronous and synchronous method

invocation, using simple Umple keywords.

• Introducing a new pattern, call/resolve/then to

ease invocation strategies, callbacks, data

resolution, and error handling.
There is an extensive literature about Umple

(Badreddin, Forward, and Lethbridge, 2014;
Badreddin, Lethbridge, and Forward, 2014;
Lethbridge, Abdelzad, Husseini Orabi, Husseini
Orabi, and Adesina, 2016; Orabi et al., 2016), but for
readers not familiar with it, the following is a very
brief summary: It is toolkit comprising a) A textual
syntax based on UML that can be incorporated into
target language code or vice-versa; b) a compiler that
generates code for modelling constructs; c) a
diagram-generator for UML and other diagrams; and
d) a model analysis engine. It can be run in Eclipse,
on the command line and on the web.

2 ACTIVE FEATURES IN UMPLE

We implement active features at three levels, the
Umple construct, the concurrency model, and the
code generated in the target language. An Umple
construct is a semantic and syntactic extension of
Umple that refers to behavior, introduces new
keywords, and specifies how they can be used. We
discuss each construct by way of scenarios with
excerpts from the code generated in C++.

A concurrency model refers to the model used to
handle concurrency among operations in terms of
communication and synchronization. Concurrency
models can be contrasted based on their behavior
patterns and mechanisms applied for inter-process
communication such as shared-state or message
passing. Examples of concurrency models include
actor model (AM) (Sutter and Larus, 2005) and active
object (AO). The differences between both models
are indicated in (Rouvinez and Sobe, 2014).

We base our work on the active object model as it
1) decouples method execution from invocation, 2)
enables invocation using a function call interface or
delegate (Microsoft.com, 2015), 3) assures data
isolation between the caller and receiver, and 4)
employs various message-passing mechanisms.

The classic active object pattern typically
involves the following elements, 1) interface: defines
accessible methods; commonly known as active
methods or public interface methods, 2) client:
implements the interface, 3) proxy: another simple
object internal to the client that the client invokes to
access other methods of the system in a thread-safe
manner, 4) request: invoked by a client to a proxy, 5)
scheduler: organizes how requests execute, 6)
response: has different forms such as callbacks,
variables, and future objects.

Typically, the active object pattern employs a
simple FIFO queue with serial execution of the
pending requests in the queue. This means that
complicated scenarios such as prioritized queues or
quasi-concurrency models are not considered. We
will show in this paper how we have managed to
overcome such limitations. Our work hence extends
the classic active object pattern in that a) there is a
more sophisticated internal scheduler mechanism; b)
there is a more sophisticated form of internal
concurrency; c) there is a prioritized FIFO queue; and
d) time constraints are allowed to permit deferred or
periodic calls.

3 STRUCTURE

The active keyword is used to declare active methods
(Snippet 1 - Line 2). An active method has the same
constraints as regular methods such as having a
unique name, return type, and signature. Once a class
has at least one active method, it will be considered
as an active class.

The main components of our active object pattern
include active object, public interface, message,
scheduler, multicast delegate, and future object.

We use template meta-programming (TMP) and
the curiously recurring template pattern (CRTP) to
enable reusability through traits and mixins
(Smaragdakis and Batory, 2000). This approach
allows to generically define active features, determine
the traits needed, and attach traits to a method
callback (delegate) within a class object. A delegate
or alternatively a function pointer is a variable used
to invoke a callback method (Rahman, 2013). It can
be either unicast or multicast, based on the number of
callbacks to be dispatched.

We use variadic template, a template with
variable arguments, to make asynchronous function

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

576

call parameters matching the exact number of original
delegate method parameters. Therefore, it will be in
sense similar to invoking the original method, but it
will instead defer the execution to the active object.

An active method is invoked in a similar manner
to regular methods (Snippet 3 - Line 8).

In terms of code generation, we rely on the Active
API (Table 1 and Table 2), which we implemented as
a part of this paper. An Active instance receives two
parameters, the class to which an active object belongs
and the return type of that active object, in addition to
the types of the parameters defined in the active
method (Snippet 1 – Lines 2 and 3). The additional
parameters are String and Integer in this case.

1

2

3

4

5

6

7

class ActiveMethodDeclaration { Umple

 String active activeMethodExample (String

 param1, Integer param2) {

 return "This is an active method:"+ param1

 <<","<< param2;

 }

}

Snippet 1: A simple active method declaration.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

//This portion is the public interface from the C++

ActiveMethodDeclaration.h file

Active<ActiveMethodDeclaration, string, string, int>

 activeMethodExample;

Scheduler _internalScheduler;

//This portion is a constructor from the

ActiveMethodDeclaration.cpp file

ActiveMethodDeclaration::ActiveMethodDeclaration()

 : activeMethodExample(this, and_internalScheduler,

 andActiveMethodDeclaration::_activeMethodExample)

}

.....

string _activeMethodExample(string param1){

 return "This is an active method:"+ param1 << ","

 << param2;

}

Snippet 2: Portions of the generated code for Snippet 1.

The name of the Active instance is the same as the
active method defined in the Umple model (Snippet
1- Line 2). The content of the active method is placed
in a private method in the generated code, and its
name is prefixed with an underscore (Snippet 2 – Line
15). The Active instance refers to this private method
(Snippet 2 - Line 11).

The Scheduler API is used to handle the execution
queue of active methods based on their order of
invocation and priorities. When an active object
exists in a class, we generate an internal Scheduler
(Snippet 2 - Line 5) that will be used by all Active
instances (Line 10 for instance)

An active method without a return type will be
assumed void. If an active method does not have

parameters, a user will not need to worry about
bureaucratically passing empty parentheses.

3.1 Public Interfaces

We use an Active template-based class to define
public interface methods to decouple method
invocation from execution (Klein et al., 2003;
Lavender and Schmidt, 1996). We employ delegate
and TMP to preprocess a public interface function to
have the same signature of a delegated method, in
addition to defaulted additional arguments such as
priority and delay. Snippet 3 is a basic example to
define an active method.

1

2

3

4

5

6

7

8

9

10

class Test { Umple

 int active call (int val1, int val2) {

 return val1*val2;

 }

 public static void main(int argc, char * argv[]) {

 Test test;

 FutureResult<int> mul = test.call(2,2);

 }

}

Snippet 3: Basic active objects in Umple.

We have two internal types of public interface
methods, active and async, for each of which we gene-
rate API to handle certain time constructs (Table 1).

They differ based on their ability to spawn a
thread; in particular, async has its own concurrent
thread, similar to the behaviour of a do activity. Async
is mainly used with repetition or periodic constructs.

Table 1: Basic APIs of time constructs.

p1, p2… pn refers to a dynamic parameters; i.e 0 to *

API Example

Active methodCall(p1, p2, ..., pn, priority, delay,

timeout)

AsyncMethod methodCall (p1, p2, ..., pn, priority,

period, delay, timeout)

Active and Async extend the original methods, such
that additional parameters are added to handle time
constructs (Table 2); the default parameter values are
zero. The methods that require asynchronous execution
rely on the async Method, while those that do not
require it rely on the Active (Table 2). Both Active and
Async rely on the Scheduler API.

It is important to mention that in Umple, for
language usability purposes, we allow developers to
define their main functions in a way similar to Java
(Snippet 3 - Line 6).

Concurrent Programming using Umple

577

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

class Test { C++

public:

 Test ():
 call(this,and_internalScheduler, andTest::

callImpl){}

 Active< Test , int, int, int> call;

protected:

 int_call(int val1, int val2) {

 returnval1 * val2;

 }

private:

 Scheduler _internalScheduler;

 };

int main(int argc, char * argv[]) {

 Test test;

 FutureResult<int> mul = test.call(2,2);

 }

}

Snippet 4: An example of generated code of an active

object.

Table 2: Time-based constructs.

The possible scopes are action code and model.

Constructs Description API Scope

Priority

Sets a priority to

determine the order

of invocation in a

queue

Both Action

code

Timeout

Sets the maximum

waiting time for a

task to be completed.

Both Both

Delay
Causes intentional

delay

Both Both

Period

Determines the

polling time for

rechecking a method

Async Both

In Snippet 4, the generated code for Snippet 3,
Line 9 defines a delegate to a function that has two
parameters of the type int, and its return type is also
int. The initialization of an active method takes place
in the constructor Line 5, which specifies a callback
method and an active object scheduler. There will be
no difference in method execution, except that it
returns a future response of class FutureResult.
FutureResult can be considered as a proxy that
communicates with the active object, and holds the
response containing the result, status, and errors. We
discuss more about this in the next section.

In generated Umple code, we follow the same
structure shown in Snippet 4. In Line 6, a public
method is created for the active method call. The

implementation of the call is defined in an internal
method _call as in Line 9. The visibility of call is
protected instead of private in order to give the ability
for subclasses to use or inherit it. Therefore, call acts
as a public interface or client, while _call acts as a
servant. There is no need to use history variables or
other mechanism to handle inheritance anomalies.

3.2 Future

Future is a shared-object proxy that provides a
channel between clients and active objects. It
provides wait-set functionality (such as wait, notify
and wait for a specific time) and a set of functions to
inquire about an asynchronous response of an active
method containing availability, content and/or errors.
Future in Umple is an instance of FutureResult.

1

2

3

4

5

6

7

8

9

10

11

12

13

class Test { Umple

 int active call (int intValue) {

 return intValue*2;

 }

 public int main(int argc, char* argv[]) {

 Test test;

 FutureResult<int> result =

 test.call(1, 10);

 result.wait(9000);

 assert(result.ready());

 cout<<result.data();

 }

}

Snippet 5: Wait-set example.

Table 3: Status types of active object execution.

Status Description

Pending Not yet processed or activated due to

queue requirements such as its order

and priority in the queue.

Waiting Processed and ready for execution in

a queue.

Deferred Postponed from being executed for

not satisfying guard constraints, and

added to deferred list to be recalled

when constraints satisfied.

Done Executed and completed without

errors.

Error Completed with errors.

FutureResult shows a simple use of the wait-set
functions (Snippet 5 - Lines 9-11). There is one active
method with a single int parameter (Line 2), and it is
invoked once (Line 7). There are other optional

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

578

parameters (with values 1 and 10 in this example)
referring to priority and delay (Line 8). The wait
function has an optional argument to specify the
expected waiting time (Line 9), otherwise it will
throw a timeout exception. Each method returns a
response describing a status (Line 11).

Table 3 shows the possible statuses, each of which
is wrapped in an instance of FutureResult.

FutureResult has error- and data-resolving
functions. They can be used to throw exceptions such
as timeout.

3.3 Scheduler

Scheduler handles mutual exclusion among queues
and message requests. The process of message
queuing may delay some tasks, even if trivial, such as
read or status check tasks. For example, when there is
a method request to update a value, it will put a mutex
on some variables.

There are three common mechanism to
implement the internal concurrency of an AO. These
are serial, quasi-concurrent, and full-concurrent
(Fuks, Ostroff, and Paige, 2004; Meyer, 1993;
Wegner, 1990). Serial or sequential creates only one
thread, which uses a first-in-first-out (FIFO) queue to
process messages and executes only one message at a
time while other messages wait in a queue. Quasi-
concurrent extends serial to have an auxiliary queue
to enable simultaneous message processing, but only
one message can be in execution state at a time.

Full-concurrent takes a different direction by
creating multiple threads and enabling simultaneous
message executions. However, there will be a need to
control message execution, by guarding the shared-
state and using wait-set features to pause and resume
threads. Also, the messages need to be separated into
different independent containers to guarantee
message order and run-to-complete semantics.

We extend quasi-concurrent to have three
priority-based double-ended queues: requests,
pending, and deferred executions. A scheduler can be
linked with a spawned thread such as an async
method to control concurrency of the owning objects.

3.4 Messages

Message refers to invocation information, which
contains the method delegate and arguments passed.
We extend the message to include optional
information, such as priority, delay, and guards.

A guard is an anonymous function with a Boolean
operator that checks satisfiability. It is mainly used
by the scheduler to make a decision to filter, execute,
or defer. A defer decision adds a message to a

deferred list of messages, such that deferred messages
of higher priorities are executed first.

3.5 Time Constraints

Table 2 shows the set of time constraints we
introduced into Umple. In an active method, a time
constraint can be set at the operation level, action
code level, or both of them. The operation level refers
to the active method definition, while the action code
level refers to the user code written in that active
method body.

Typically, action code of an active method is
executed sequentially within its owning active
object's thread. Nevertheless, some specialized
Umple time constructs can be used to enable
asynchronous execution, such that it will need to
spawn a thread to run concurrently; refer to period in
the API column, in Table 2.

4 METHOD INVOCATION

In this section, we discuss the features we
implemented to improve writing the action code of an
active method.

Writing action code in the target language may
have limitations. For instance, the C++ 03 standard
does not provide an easy way to define anonymous
functions. At the model level, we need to have a way
to regulate the process of handling error exceptions or
then calls.

Although the content of an active method runs in
a separate thread, this may still have some limitations.
For instance, within the action code of the same active
method, we may find it important to invoke other
methods, which could be regular methods.

In terms of the code generation, an Active instance
will be created to wrap the regular method within
active execution.

The trigger operator, "/" is used to invoke a
method, either active or nonactive, or an anonymous
body. It is used to enforce active behaviour on a
method even if it is not defined active. For instance,
the call in (Snippet 6 - Line 8) will have its own
thread, while the call in (Line 9) will not.

Trigger can be used to embed and call anonymous
functions (Snippet 6 - Lines 13-15). In the generated
code, we create a new method that has the content of
the anonymous function. We make sure that this
anonymous method has a unique name derived from
the active method name and nonactive method being
invoked, augmented with an integer to distinguish
each case.

The call/then pattern is similar to the try/finally
pattern that exists in common programming

Concurrent Programming using Umple

579

languages such as C++ and Java, but it differs in that
it works asynchronously. Simply, we wrap method
invocation within an anonymous body (Snippet 6 -
Lines 19-31). We can directly write code (Lines 19
and 23), or invoke other methods (Line 26). The code
generated will make a call to the then body (Lines 22
and 28) after the call body (Lines 20 and 26).

The call/then/resolve pattern is used to handle
exceptions, such that the resolve body is only invoked
upon exceptions (Snippet 6 – Lines 30 and 40).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

class MethodInvocation{ Umple

 void regularMethod(){

 cout << "A regular method but can

 be invoked actively";

 }

 void active regularInvocation(){

 /regularMethod();

 regularMethod();

 }

 void active annomousMethod(){

 /{

 cout << "Anonymous body" ;

 }

 }

 void active thenMethod(){

 /{

 cout <<"Call body" ;

 }.then({

 cout <<"Then body";

 })

/{

 this-> regularInvocation();

}.then({

 cout <<"Then body";

 }).resolve({

 cout << "Handle Exception";

})

 }

 void active deferredTest(){

 [/{cout << " Anonymous";},

 /{this->regularInvocation ();}

].then({

 cout << " Then body";

 }).resolve({

 cout << "Handle Exception";

 })

 }

}

Snippet 6: Method invocations.

Deferred list is a way to combine multiple resolve
bodies in a single call (Snippet 6 – Lines 35-36). After

the execution of a deferred list, the then or resolve
bodies are invoked one time (Lines 38 and 40).

5 CONSTRAINTS

Constraints, either logical or time, are used to guard
active method from being invoked unless they are
satisfied. These constraints can be applied on
scheduler (Table 2), method (Snippet 7 - Line 10), or
action code (Line 5) level.

Table 2 shows the list of time constructs that can
be applied upon method or action code invocation. A
simple example of using the period keyword is shown
in Snippet 7- Lines 10-13.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

class LogicalConstraintsTest{ Umple

 Boolean flag= false;

 void active activeMethod{

 [flag==true]/{

 cout <<"Execute only if Flag is true" ;

 }

 }

 [period(1000)]

 void active periodMethod(){

 cout <<"Called each one second";

 }

Snippet 7: Constraints.

6 EVALUATION

We evaluate our work, qualitatively and
quantitatively. In our qualitative evaluation, we
compare our work against relevant specifications.

In our quantitative evaluation, we evaluate a set
of snippets for different variation of concurrency
using Umple.

6.1 Qualitative Evaluation

In this section, we show a comparison (Table 4) of
our approach against two common specifications,
UML (OMG, 2011a) and Modelling and Analysis of
Real Time and Embedded systems (MARTE) (OMG,
2011b), which both are used to manage time. We aim
in this comparison to show how our implementation
of concurrency and active objects can cover the core
requirements specified in those specifications.

MARTE is an OMG standard for embedded
applications and real-time modelling (OMG, 2011b);
it is aligned with UML specifications.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

580

MARTE extends UML in order to have better
handling for embedded systems.

Table 4: A comparison of time management specification.

 UML MARTE Umple

Timing model SimpleTime Time Package
Language

constructs

Time constraints OCL

Logical and

physical

constraints

Logical and

physical OCL

constraints

Time units and

other accessible

variables

Time expressions

Limited

(timing

diagrams)

Conditional

assertions and

Jitters

Supported on

end-to-end flows

and action code

Synchronization

Limited

(sequence and

activity

diagrams)

Supported

(TimedConstrai

nt)

Language

constructs

E
v

en
t

m
an

ag
em

en
t

Repetition

Limited

TimedConstraint

Poll

Reaction call/then/resolve

Delay Delay

Periodic Timeout, period,

and priority

Other

Burst,

aperiodic,

sporadic, time

intervals, and

workload

generator

Delay, guards,

and constraints

Scheduling

Sequence and

activity

diagrams

End-to-end

flows

End-to-end flows

Support other

behavior Umple

models.

Active blocks

Composition

Interfaces

(provides and

requires)

Runnable

entities, takes,

operation

Interfaces

(provides and

requires)

Interfaces

(Provides and

Requires)

 Support

composition

rules through

active invoke

blocks.

Synchronization

semantics
RTC

Depends on
synchronization

(read/write)

events

Depends on

synchronization

(read/write)

events and the

precedence of

their logical

relationship

Supports RTC

Supports the four

types of

communication

Trigger

Classes and

state

machines

Trigger

Trigger Blocks

Call/'then/resolve

patterns

In Table 4, there are two levels of comparison,
operating systems and modelling levels. The
comparison criteria at the operating system level are
timing extensions, activation events, and scheduling.
The comparison criteria at the modelling level are
composition, synchronization semantics, and trigger.

The timing extension criterion consists of
subcriteria: timing models, time constraints, time
expressions, and synchronization. By a timing model,
we refer to how timing is handled in the given
technology. In UML, the root package used to handle
time is SimpleTime (OMG, 2011a).

In terms of the timing model for MARTE,
temporal properties are handled using the "Time"
package (Mallet, 2008); this package is often used
with a non-normative annex of MARTE, Clock
Constraint Specification Language (CCSL). On the
other hand, timing in Umple is handled directly using
Umple constructs.

In terms of time constraints, UML uses Object
Constraint Language (OCL) (Gherbi and Khendek,
2006).

In MARTE, there are physical and logical
constraints. Both are handled using a clock model,
which is handled at the model level, mainly using the
CCSL mentioned above. In Umple, we follow OCL
semantics when defining physical or logical
constraints (Section 5).

By time expressions, we refer to constructs
provided by a language or specification to create time
expressions; e.g. to define time constraints. Time
expressions are limited in UML, but a specialized
type of sequence diagrams, a timing diagram is used
to handle time constraints and expressions (Gherbi
and Khendek, 2006).

MARTE provides a direct way to define several
time expressions such as conditional assertions and
jitter.

We showed before that we have three levels to
handle time expressions, task, queue, and scheduler
levels; constructs used to define time expressions
were summarized in Section 5.

In Umple, the constructs provided to handle
constraints and time are used to support end-to-end
flow.

Synchronization refers to a way used to enforce
timing requirements and data flow among channels
and events. Examples of synchronization include
defining a maximum data rate between input and
output events, maximum and minimum jitter, time
interval, and absolute and relative duration. An
absolute duration refers to hard real-time
requirements, which do not accept any sort of delay.
A relative duration refers to soft requirements, which
accept delays using concepts such as jitter and
latency. Latency refers to amount of time taken for

Concurrent Programming using Umple

581

transmission between source and target; e.g.
response. Jitter varies over time, since it refers to the
variation of latency over time, such as in
milliseconds. Stable connections have less jitter (S.
Rappaport, 2001).

Synchronization can be either enforced on input
or output events. Output synchronization is supported
by all items in our comparison. In UML,
synchronization is handled via activity and sequence
diagrams.

In MARTE, the package TimedConstraint
handles both input and output synchronization. In
Umple, we handle synchronization using time
constructs and the call/then pattern (Sections 4 and 5).

Event management is the way method invocation
is handled. Method invocation is temporal and event-
oriented so we prefer to refer to the whole process as
event management. The subcriteria of our comparison
include repetition, reaction, delay, periodic, and
other.

Repetition means making the same calls or
invocation several times over a period. However, a
repetition rate does not necessarily refer to a repeated
sequence of events; it also refers to receiving events
from different places such as ports, at the same time.
In such a case, the appropriate guards and logical
conditions must be applied in order to ensure data
acceptance.

A clock port is a good example to describe
handling repetition rates. For example, every two
seconds a port can receive multiple signals at the
same time. In such a case, the port must provide a way
to recognize these signals incoming from different
places, and properly process them in the right
sequence based on the logical and physical
constraints.

Reaction is self-explanatory as it refers to the
reaction to events or method invocation; this reaction
can also involve sending new signals or making new
method invocations. Predefined constraints or guards
are important to manage reactions.

Delay refers to how to handle delays that are
either unintentional or intentional. By intentional
delay, we mean that a developer intentionally wants a
delay to occur. Unintentional delay refers to delays
that occur because of unexpected circumstances such
as networking; examples of handling related to this
context include jitter, latency, and timeout. Periodic
refers to the appropriate ways used to handle delays
and repetitions such as jitter and latency. By other, we
refer to any other general terms or additional
keywords provided by specifications.

UML does not provide a direct way to handle the
abovementioned concepts of event management. A
developer will need to implement their event
management mechanisms manually. For example,
they will need to implement a clock port manually.

Event signals are done using diagrams such as state
machine, sequence, and composite structure.
Concepts such as repetition will be done manually
such as using for loops.

In MARTE, a base class, TimedConstraint is used
to handle event management. MARTE provides
several options to manage events such as burst,
aperiodic, sporadic, time intervals, and workload
generator.

In Umple, we support event management using
time and logical constraints at different levels: model,
scheduler, and action code (Section 5). In terms of
reactions, we rely on the call/resolve/then patterns
(Section 4). Generally, we rely on OCL constructs to
build guard conditions.

Scheduling refers to the way that events are
scheduled for a period. Scheduling is important to
handle timing constraints. In UML, sequence and
activity diagrams can be used to handle the sequence
of events. Concepts such as join and fork can be used
to enable creation or merging of multiple paths of
execution.

On the other hand, MARTE has end-to-end flows
to handle scheduling. An end-to-end flow enables
method invocation from different places or diagrams
according to a sequence. A sequence in this context
means what method(s) to be invoked next upon
method execution. As well, MARTE uses the fork
and join constructs.

Similarly, in Umple, we support end-to-end
flows. For instance, we can invoke a state machine
method from an active method. Joining and forking
are also supported in Umple. For example, we can
define multiple code blocks in an active method
(Section 4), or multiple regions in a state machine.

At the modelling level, we focus in our
comparison on the context of platform, analysis,
resources, and workflow behaviour. This is summed
up to three comparison items, composition,
synchronization semantics, and trigger. Generally,
composition is handled using composite structure
diagrams. All items in our comparison rely on
interfaces, mainly as provide or require ports.

Umple supports communication via R-Ports and
P-Ports (Orabi et al., 2016) as chains of events. The
common ports used in MARTE include FlowPort and
MessagePort (Espinoza, Gérard, Lönn, and Kolagari,
2009). Additionally in Umple, developers are able
define composition rules such as constraints and
guards.

Synchronization semantics refers to the semantics
followed for synchronization processes; we
mentioned earlier in this section what we mean by
synchronization. In UML, the default semantics is
run-to-completion (RTC), since active objects are not
a part of the UML constructs. For example, direct
calls for state machines will have RTC behaviour.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

582

In MARTE, synchronization depends on
notifications occurring from read and/or write
operations. Such operations require using an
appropriate locking mechanism.

We support all types of semantics including RTC,
since we support the four types of communication.
For example, we can invoke state machine methods
via asynchronous methods. This is mainly because in
Umple, semantics can be written directly at the code
level. As well, synchronization can be applied on
events, which can be aligned in a prioritized queue.

A trigger is a well-known concept that refers to a
method or procedure to be invoked upon a condition
or event. In UML, triggers are defined at the level of
classes and state machines (Kaneiwa and Satoh,
2010).

In MARTE, triggers are defined as "Trigger"
objects. Triggers in Umple can be defined using
call/'then/resolve patterns or state machines. A trigger
in Umple is indicated using the ‘/’ operator as well as
the call/then/resolve pattern.

6.2 Quantitative Evaluation

In this section, we evaluate aspects of our work based
on measuring software complexity.

We calculate McCabe Cyclomatic Complexity at
the model level based on the Boolean constraints
defined, such that each constraint has a weight of two;
i.e. two constraints defined will be valued 4. We
calculate the complexity ratio as 100 −
 (𝑈𝑚𝑝𝑙𝑒 𝑀𝑐𝑎𝑏𝑒/𝑀𝑐𝐶𝑎𝑏𝑒) × 100. This corresponds
to the percent reduction of complexity when writing
in Umple, as opposed to the generated C++ code. We
computed Cyclomatic Complexity using the
LocMetrics tool (http://www.locmetrics.com/).

The code generated by Umple provides additional
lightweight libraries to support multi-threading,
distributing, and serialization. We exclude this code
to avoid bias: In other words, code that would be
written by developers in Umple is compared against
code that would need to be written by developers in
C++ if Umple was not available.

Figure 1: LOC comparison.

In Figure 1, there is a high statistical significant
(𝑝 < 0.0001 and 𝑡 = 22.098) reduction in lines of
code between Umple models and their generated C++
code. This reduction averages 222 LOC and 90.9%
difference and is roughly constant, hence independent
of model size.

Figure 2 shows the reduction in percentage for
various Umple models that exercise the Umple
constructs. More details about the Umple models
used in our evaluation are in (Orabi, 2017).

Figure 2: LOC comparison by percentage.

The cyclomatic complexity reduction averages
about 67.45%. Figure 3 shows doughnut graph for
cyclomatic difference between C++ and Umple.

Figure 3: Cyclomatic Complexity doughnut.

A threat to validity of this analysis is that the C++
code written by a developer might be rather different
from that generated by Umple. It may be possible for
a developer to leave out some parts, or find other
ways to make the C++ more compact. However, we
suggest that writing such compact C++ might in fact
make it more obfuscated, and hence add even more to
complexity.

Concurrent Programming using Umple

583

7 CONCLUSIONS

In this paper, we showed how Umple provides major
features required for concurrent programming. The
focus was on showing how active object development
in Umple will be simplified such that a user will not
need to worry about all of its challenges and
implementation details.

Concurrent programming in Umple is supported
at the model level meaning that concurrency will be
consequently enforced at the generated code level.
We showed how concurrency definition and
implementation in Umple could easily help a
developer to optimize performance of their
applications

Using simple Umple constructs, a user is able to
define their time constraints. We evaluated our work
on two bases, qualitative and quantitative. In the
qualitative evaluation, we showed a comparison
between standards (UML and MARTE) used for time
management, and Umple. The essence behind our
comparison was to show how Umple can meet time
requirements specified in these common standards.
For quantitative evaluation, we showed a comparison,
based on LOC and cyclomatic complexity, between
Umple models and their generated code in C++,
based on which we showed significant statistical
difference.

For future work, we will highlight the
communication among active objects in a distributed
environment. This requires the implementation of
concepts such as ports and composite structure.

REFERENCES

Alghamdi, A. (2010). Queued and Pooled Semantics for

State Machines in the Umple Model-Oriented

Programming Language (Master’s thesis). University

of Ottawa.

Badreddin, O., Forward, A., and Lethbridge, T. C. (2014).

Improving Code Generation for Associations:

Enforcing Multiplicity Constraints and Ensuring

Referential Integrity. SERA (selected papers) (Vol.

430). https://doi.org/10.1007/978-3-642-30460-6

Badreddin, O., Lethbridge, T. C., and Forward, A. (2014).

A Test-Driven Approach for Developing Software

Languages. In MODELSWARD 2014, International

Conference on Model-Driven Engineering and

Software Development (pp. 225–234). SCITEPRESS -

Science and and Technology Publications.

https://doi.org/10.5220/0004699502250234

Cplusplus.com. (2016). Future. Retrieved June 20, 2001,

from http://www.cplusplus.com/reference/future/

Espinoza, H., Gérard, S., Lönn, H., and Kolagari, R. T.

(2009). Harmonizing MARTE, EAST-ADL2, and

AUTOSAR to Improve the Modelling of Automotive

Systems. In The workshop standard, AUTOSAR.

Fuks, O., Ostroff, J. S., and Paige, R. F. (2004). SECG: The

SCOOP-to-Eiffel code generator. Journal of Object

Technology, 3, 143–160. https://doi.org/10.5381/

jot.2004.3.10.a3

Gherbi, A., and Khendek, F. (2006). UML Profiles for

Real-Time Systems and their Applications. Journal of

Object Technology, 5(4), 149–169.

Kaneiwa, K., and Satoh, K. (2010). On the complexities of

consistency checking for restricted UML class

diagrams. Theoretical Computer Science, 411(2), 301–

323. https://doi.org/10.1016/j.tcs.2009.04.030

Klein, P. N., Lu, H. I., and Netzer, R. H. B. (2003).

Detecting race conditions in parallel programs that use

semaphores. Algorithmica (New York), 35(4), 321–345.

https://doi.org/10.1007/s00453-002-1004-3

Lavender, R. G., and Schmidt, D. C. (1996). Active object:

an object behavioral pattern for concurrent program-

ming. In Pattern languages of program design 2 (pp.

483–499). Addison-Wesley Longman Publishing Co.,

Inc. Boston, MA, USA.

Lethbridge, T. C., Abdelzad, V., Husseini Orabi, M.,

Husseini Orabi, A., and Adesina, O. (2016). Merging

Modeling and Programming Using Umple. In

International Symposium on Leveraging Applications

of Formal Methods, ISoLA 2016 (pp. 187–197).

https://doi.org/10.1007/978-3-319-47169-3_14

Mallet, F. (2008). Clock constraint specification language:

Specifying clock constraints with UML/MARTE.

In Innovations in Systems and Software Engineering

(Vol. 4, pp. 309–314). https://doi.org/10.1007/s11334-

008-0055-2

Meyer, B. (1993). Systematic concurrent object-oriented

programming. Communications of the ACM.

https://doi.org/10.1145/162685.162705

Microsoft.com. (2015). Delegates (C# Programming

Guide). Retrieved January 1, 2017, from https://msdn.

microsoft.com/en-CA/library/ms173171.aspx

Ober, I., and Stan, I. (1999). On the Concurrent Object

Model of UML*. In 5th International Euro-Par

Conference Toulouse, France, August 31 – September

3, 1999 Proceedings (pp. 1377–1384). https://doi.org/

10.1007/3-540-48311-X_193

OMG. (2011a). UML 2.4.1. Retrieved January 1, 2015,

from http://www.omg.org/spec/UML/2.4.1/

OMG. (2011b). UML Profile for MARTE: Modeling and

Analysis of Real-Time Embedded Systems. Retrieved

from http://www.omg.org/spec/MARTE/1.1/PDF

Orabi, M. H. (2017). Facilitating the Representation of

Composite Structure, Active objects, Code Generation,

and Software Component Descriptions for AUTOSAR

in the Umple Model-Oriented Programming Language

(PhD Thesis). University of Ottawa. https://doi.org/

10.20381/ruor-20732

Orabi, M. H., Orabi, A. H., and Lethbridge, T. (2016).

Umple as a Component-based Language for the

Development of Real-time and Embedded

Applications. In Proceedings of the 4th International

Conference on Model-Driven Engineering and

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

584

Software Development (pp. 282–291). SCITEPRESS -

Science and and Technology Publications. https://doi.

org/10.5220/0005741502820291

Rahman, M. (2013). Delegate. In Expert C# 5.0 (pp. 187–

211). Berkeley, CA: Apress. https://doi.org/10.1007/

978-1-4302-4861-3_7

Rouvinez, T., and Sobe, A. (2014). Comparison of Active

Objects and the Actor Model, Universite De Neuchatel,

Institut D’informatique, Rapport De Recherche, RR-I-

AS-14-06.1.

S. Rappaport, T. (2001). Wireless Communications:

Principles and Practice. Prentice Hall; 2 edition.

Smaragdakis, Y., and Batory, D. S. (2000). Mixin-Based

Programming in C++. In Proceeding GCSE ’00

Proceedings of the Second International Symposium on

Generative and Component-Based Software

Engineering-Revised Papers (pp. 163–177).

Sutter, H., and Larus, J. (2005). Software and the

concurrency revolution. Queue, 3(7), 54.

https://doi.org/10.1145/1095408.1095421.

Wegner, P. (1990). Concepts and paradigms of object-

oriented programming. ACM SIGPLAN OOPS

Messenger. https://doi.org/10.1145/382192.383004.

Concurrent Programming using Umple

585

