
Towards Better Document to Model Synchronisation: Experimentations
with a Proposed Architecture

Arnaud Michot, Christophe Ponsard and Quentin Boucher
CETIC Research Centre, Charleroi, Belgium

Keywords: Model-based Engineering, Model-Driven Development, Traceability, Usability, Requirements Engineering,
Eclipse Modelling Framework.

Abstract: The Model Based Engineering approach is centred around the use of a model repository and a modelling tool.
A drawback of the approach is that the evolution of derived documents or other artefacts requires to go back to
the model. This process involves tracing the source element back in the model editor before triggering updates.
This can reveal quite inefficient and even cause user rejection. This paper presents a reusable architecture
including a back channel from a document to the related model. It efficiently supports the locate operation
of model elements from the document, model updates from the document (including in-place text editing,
e.g. to fix typos inside a description), and even concept creation from a text document. We also report on our
experience in implementing this architecture in two modelling tools: the Objectiver goal-oriented requirements
engineering tool and the Eclipse Modelling Framework, both with mainstream commercial and Open Source
text processors.

1 INTRODUCTION

Modelling is heavily used across many engineering
disciplines like the building of bridges, electronic
systems and, more recently, software-based systems.
Nowadays, Model-Based Engineering (MBE), and
more specifically Model-Driven Engineering (MDE)
have become mainstream paradigms for software and
systems development (Schmidt, 2006). Such ap-
proaches can rely on standardised and well adopted
modelling languages like UML (OMG, 1997) or
SysML (OMG, 2005). Those languages provide a vi-
sual syntax enabling the design and communication
activities of the engineers but also have precise se-
mantics to enable automation of parts of the System
Development Life Cycle (SDLC).

Efficient modelling is achieved through computer
tools typically composed of a modelling environment,
a model repository and a model transformation tool
chain for synchronising modelling artefacts at differ-
ent steps of the SDLC. Model-to-model and model-
to-text transformations are used to generate detailed
models from abstract ones and code/documentation
from models, respectively. Unfortunately, in prac-
tice, only part of such artefacts can actually be gen-
erated from source models as target models and texts
require to be manually refined and completed. Hence,

the MDE approach also has to coexist with the tradi-
tional flow of documents produced along the SDLC,
like requirements documents, detailed specifications,
design documents, test plans, etc. Such documents
are also key project milestones required for inter-
nal workflows and/or external certification processes.
They usually mix text, tables and pictures under either
a text processing, or spreadsheet format.

Consequently, the synchronised management of
documents and models is a complex task. A key prob-
lem is to manage traceability, i.e. how to relate tex-
tual and modelling elements. For poorly structured
documents, this needs to be achieved manually and
is very costly. For documents with a better structure,
some form of automated extraction can be considered
to initiate a model, or conversely, a structured docu-
ment can be automatically generated from a model.
In both cases, the traceability can be established effi-
ciently and used to maintain a synchronisation. De-
pending on the context, the synchronisation may be
triggered from the model, the document or both (i.e.
round-trip mode).

Model to text transformations were defined in
the general MOF2Text (OMG, 2008) specification
with practical implementations based on XML, like
XSLT/FOP, or the Eclipse Modelling Framework
(EMF), like GenDoc or M2Doc both based on Ac-

Michot, A., Ponsard, C. and Boucher, Q.
Towards Better Document to Model Synchronisation: Experimentations with a Proposed Architecture.
DOI: 10.5220/0006687505670574
In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), pages 567-574
ISBN: 978-989-758-283-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

567



celeo (Haugommard, 2011; Obeo, 2011). This cov-
ers both code and document generation. Unfortu-
nately, little has been done in the area of model to
text traceability: most solutions essentially focus on
code (Olsen and Oldevik, 2007). For documents, the
approach is rather unidirectional and requires to cor-
rect the model and regenerate the document. Direct
integration with text processors is also missing while
most users are far more familiar with such software
than with a modelling tool.

On the other hand, direct synchronisation between
a model and related documents can also be achieved
by using a Domain Specific Language (DSL) used
to capture the document structure. Popular DSL im-
plementations like XText (Efftinge., 2006) have their
own underlying model with a quite direct (i.e. bijec-
tive) mapping with the engineering model that makes
the model to model synchronisation easier (Hettel
et al., 2008). However, again such techniques cannot
be applied inside text processors.

As a result, most commonly reported practices are
either that people spend a lot of time to locate the
model elements they have to correct w.r.t. a problem
noticed in a document (e.g. a typo), or they just do
not update the model, meaning they manually correct
documents again and again, and probably lose some
changes. Our motivation to tackle this problem actu-
ally comes from requests of industrial users having to
face such costly overheads which strongly impact the
efficiency of a MDE approach in their domain.

This short paper reports on our work to address
the above limitations by proposing a practical archi-
tecture that can cope with modelling frameworks on
one side, and mainstream (Open Source or commer-
cial) office suites on the other side. We describe a
global architecture covering both model to document
and document to model interactions. However, our
prototyping will focus on the later and less covered
topic. We consider the following three scenarios:

• Locate an element in a model from a text docu-
ment.

• Perform direct edition of a modelling element
from a text document.

• Create a new modelling element from a text doc-
ument.

In order to validate that our approach can be used
in practice, we demonstrate its use on two different
modelling environments: a requirements engineering
tool named Objectiver (Respect-IT, 2011), and the
Capella System Engineering platform (Polarsys/CIS,
2015). We also cover different targets: MS Word
documents, Open/Libre Office text documents and
HTML documents.

This paper is structured as follows. First, Section

2 presents the proposed architecture. Then, Section 3
details our implementation on the mentioned targets.
Section 4 discusses it in the light of related works.
Finally, section 5 concludes with the current status of
our research and the next envisioned steps.

2 REFERENCE ARCHITECTURE

2.1 Overview

The proposed architecture is depicted on Figure 1.
The left part of the picture represents the (system)
modelling environment while the right part is the Of-
fice environment. Although we will restrict to text
document for the rest of the paper, the architecture
is general and can also be applied to spreadsheets.
In the figure, white components are standard compo-
nents like the modelling environment (e.g. Capella),
the modelling repository (e.g. EMF), document gen-
eration libraries (GenDoc/M2DOC/FOP) and office
suites (MS Word, Writer). The grey components
are additions that need to be implemented to ensure
the correct support for the envisioned synchronisation
scenarios. The rest of this section will describe them.

2.2 Initial Document Generation

This step is done using the model to text library.
Model elements that need to be kept synchronised are
tagged with a unique model identifier so they can be
traced later. This information can be embedded using
a custom field of the target format (docx/odt/html).

Once generated the document can be transferred
and opened automatically in the target office platform
(or browser in case of HTML generation) using the
standard integration API of those components.

2.3 Model to Document Update

If the model is changed then the related documents
need to be updated. For this purpose, documents must
be kept in the model workspace. The update can be :

• an incremental update of traced elements: the ref-
erenced are updated through the server API of the
target office platform (e.g. OLE for MS Office,
UNO for Open/Libre Office). If some model el-
ement are removed, their reference is marked as
deleted or,

• in case of full update, the whole document is re-
generated using the same process as the initial
document generation.

Three update scenarios are possible:

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

568



• for documents within the workspace and opened,
the update should be immediate and the docu-
ments should be refreshed.

• for closed documents within the workspace, the
update can be delayed until their next opening.

• for documents exported outside the workspace,
the update will be delayed until they are imported
back into it (assuming identifiers are preserved).

2.4 Document to Model Update

This part is supporting the proposed scenarios to lo-
cate, edit or create concepts from the text processor.
This is achieved through a channel from the office
platform back to the modelling platform. This re-
quires the following extensions :
• the document editor must support those user inter-

face actions on text bound to a model element.
• once triggered the requested action must be com-

municated to the modelling platform.
• the modelling platform must act as a server and

listen to incoming synchronisation requests to per-
form the required update.
In order to achieve this communication channel,

we rely on a more general web service API developed
to expose any kind of model that can be modelled us-
ing EMF (Michot et al., 2016). The full API is not
required but is useful for other purposes. In case it is
not available, the minimal services required are :
• locate: GET <server_url>/api/concepts/id/locate
• edit: PUT <server_url>/api/concepts/id - the

JSON input should contain the attributes/values to
update.

• create: POST <server_url>/api/concepts - the
JSON input should contain the attributes to ini-
tialise and, upon success, the service will return
the identifier of the created concept.

3 IMPLEMENTATION CASES

In this section, we describe two implementations that

cover two different system engineering tools and dif-
ferent target document formats. Each case will have
the same structure: first a short description of the
tool, then some implementation details and, finally,
an overview of the prototyped integration.

3.1 Integration with Objectiver

3.1.1 Description

Objectiver is a goal-oriented requirements engineer-
ing tool (Respect-IT, 2011). It relies on a strong
modelling approach with a rich meta-model (includ-
ing goals, requirements, obstacles, refinements, oper-
ations, entities, relationships, agents, etc.). It is fully
documented in (van Lamsweerde, 2009).

The tool is built around the requirements model
and supports a rich set of interplay scenarios involv-
ing text, diagrams and tables as depicted in Figure 2
and detailed in (Ponsard et al., 2015). For example a
diagram can be generated to describe the responsibil-
ities of an agent. This diagram can then be included
in a requirements document along with a list of all the
requirements under the agent’s responsibility.

3.1.2 Implementation

Both Open/Libre Office and MS Word were inte-
grated with the desktop edition of Objectiver. The
noteworthy features and issues are :

• a REST API can be used for integrating with ex-
ternal tools and the web version of the product.

• Open/Libre Office has a server mode based on
UNO. MS office can be controlled through OLE.

• context menu extensions are available both for
Writer and MS Word. Special fields can be used
to embed model elements in text.

• MS Word provides a direct edition field. For
Writer, a modal window is needed for editing.

• for uniquely referencing concepts, a specific
URI protocol is used: objectiver://project_id/
concept_id[/attribute-id]

Figure 1: Proposed round-trip architecture.

Towards Better Document to Model Synchronisation: Experimentations with a Proposed Architecture

569



Figure 2: Interactions between text and modelling artefacts.

Figure 3: Locate action invoked from Open Office.

3.1.3 Resulting Open/Libre Office Integration

Locate Scenario. The user just has to right click
on the concept and select "Locate Concept in Model"
from the additional Objectiver menu available at the
top of the concept menu. Figure 3 shows this ac-
tion being invoked on the Maintain[Real Estate Ob-
ject Known and Kept Up-to-date] goal fully described
through a diagram just above.

The result is that the concept is located in the main
Objectiver window shown in the background. In this
window one can see the concept is visible and high-
lighted in the model navigator area. Note also that

the OpenOffice report is among the listed referencing
documents in the tab on the bottom right. Clicking
on the corresponding "Open" button will trigger the
reverse locate from the model to the document. The
document will be opened (if not yet) and positioned
on the first reference of the concept.

Edit Scenario. The same menu is used. On the con-
cept reference the "Rename Concept" action can be
used. Edition is not in place but through a modal
box shown in Figure 4. The model and other doc-
ument references are of course updated accordingly.
Alternately, the user can also chose to use the "lo-

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

570



Figure 4: Rename concept action invoked from Open Of-
fice.

cate" function and perform the update in the model
and it will see the opened document updated directly.

Create Scenario. The user can select some text and
decide to tag it as concept of the specified type. The
selected text will then be used as concept name. The
concept is inserted in the same package as the docu-
ment and the traceability link is inserted in the docu-
ment. Such a scenario is more likely from source doc-
ument than from a report. Figure 5 shows the menu
for a create action and also shows the result in the
modelling tool (concept listed in navigator and source
document referenced in model).

Concept Evolution from Model. Also impacts the
document. In addition to the rename operation al-
ready discussed, concept deletion is marked using a
specific reference as shown in Figure 6. An alterna-
tive could be to use the text processor change tracking
facilities.

3.2 Integration with EMF

3.2.1 Description

EMF is an Eclipse-based modeling framework and
code generation facility for building tools and other
applications based on a structured data model (Stein-
berg et al., 2009). This common standard for data
models is used by many technologies and frame-
works, e.g. server solutions, persistence frameworks
and support for transformations. The Capella system
engineering tool is based on it (Polarsys/CIS, 2015).

3.2.2 Implementation

We highlight here a generic implementation based on
the core EMF editor. This implementation is avail-
able as Open Source (Obeo, 2011) and relies on the
following principles. We focus here on the integra-
tion with HTML and Word.

• the RAWET REST API provides the required
services for interacting with the model from the
document (Michot et al., 2016). It was directly
plugged on the client tool (local use only) but it
can also be used on a EMF repository.

• HTML generation is provided by EGF and can
easily be tuned to inject references (e.g. as hyper-
links) in the same format as described previously.

Figure 5: Create action invoked from Open Office.

Towards Better Document to Model Synchronisation: Experimentations with a Proposed Architecture

571



Figure 6: Result of a concept deletion inside a document.

• HTML integration is straightforward using stan-
dard JavaScript for event handling and REST
calls.

• Word generation was implemented using M2Doc
(Obeo, 2011), again with the embedding of refer-
ences in directly editable custom fields.

• Word menu additions and related commands (e.g.
REST calls) are both implemented using Visual
Basic. The code is bundled in a template and re-
quires the permission to execute macros.

3.2.3 Resulting HTML/Word Integration

Locate Scenario (HTML). As shown on Figure 7,
a click on the "DEMO" concept in the navigator (on
the right) triggers the highlighting of the concept in
the Eclipse EMF editor (on the left).

Locate Scenario (Word). The locate scenario in
Word is quite similar as in OpenOffice. Figure 8
shows the "DOC2M" context menu (on the bottom
right) triggered on an mapped field. The effect is sim-
ilar as for the HTML locate.

Edit Scenario. Edition mechanism is quite similar
as for the other tools. The main point is that there
is no menu entry as the custom (multi-line) field is
directly editable. It can also display the concept type
and supports spell checking as shown in Figure 9.

Create Scenario. The create action is visible in
Figure 8. Its effect is similar as for the Objectiver
tool but within the EMF editor.

Note that edit and create scenarios are less mean-
ingful in HTML except for a web-based editor.

4 RELATED WORK

ModelWriter is an integrated authoring environment
providing support for understanding text, guiding the
creation of structured models (Erata et al., 2017a). It
provides a generic traceability analysis or text-model
synchronisation in order to ease documentation main-
tainability and reduces product defect costs caused by
inconsistent or obsolete knowledge. It can consider
fragments of text, architecture elements and parts of
source code. It also enables reasoning about relation
through a proper axiomatisation (Erata et al., 2017b).
In comparison, our work is focusing more on a consis-
tent and usable text to model link. Concept traceabil-
ity in our approach results from the document gener-
ator. It is not explicitly modelled as in ModelWriter
but could definitely benefit from it.

Synchronisation of Textual Views in the scope
of multi-view models is analysed in (Goldschmidt,
2011), especially for partial textual views. There,
the author proposes to synchronise transformations
from and to the textual view model through an incre-
mental parsing approach. It also defines synchronisa-
tion transformations to handle modifications made by
editing the text model and update the underlying do-
main model incrementally. This work can also help in
proposing a standard way to define our initial trace-
ability mapping between the model and each docu-
ment type.

Defining the traceability mapping between the

Figure 7: Locate action invoked from a browser.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

572



Figure 8: Locate action invoked from Word.

Figure 9: Direct edit of a concept description in Word.

model and the target document can require a lot of
tuning. A technique to support the development of
M2T transformations by providing automatic correc-
tions from minor changes introduced in the document
is proposed by (Guta, 2012). This could ease the evo-
lution of our initial transformation by a non-expert.

5 STATUS AND ROADMAP

This work is motivated by the industrial need for bet-
ter document to model mappings to complement the
existing model to document approaches. After defin-
ing a generic architecture, our contribution focused
on the less commonly addressed document to model
synchronisation. We proposed an URI-based mecha-
nism and prototyped it in both a commercial tool and
in the Open Source Eclipse platform. Our work is
fully available in Open Source mode (EPL license)
on GitHub (Michot and Ponsard, 2017). Based on
the proposed architecture and the released code, pro-
totyping a synchronisation can be achieved within a
few days of work.

Our work is still partial as our synchronisation is

currently limited to concept references (locate, cre-
ate, rename) and does not yet fully cover the attribute
level. We are currently working on extending this
mapping and on providing a better integration with
widely used Sirius-based editors like Capella (Po-
larsys/CIS, 2015). Our work is already daily used in
the commercial tool implementation but not yet on the
Eclipse-based integration. The next step will be to ex-
tend our prototyping to support Capella specific views
and perform validation with industrial users, mainly
from the railway and logistics domains. Looking fur-
ther ahead, we are also considering the interfacing be-
tween SaaS-based modellers and editors (like Google
Docs or Open Source alternatives) based on the de-
veloped REST API.

ACKNOWLEDGEMENTS

This research was partly funded by the INOGRAMS
project of the Walloon Region (grant nr. 7171). We
thank Respect-IT for giving us access to their SDK
and Obéo for their support about Sirius and M2Doc.

REFERENCES

Efftinge., S. (2006). XText - Language Engineering for Ev-
eryone. https://www.eclipse.org/Xtext.

Erata, F. et al. (2017a). ModelWriter Project. https://
itea3.org/project/modelwriter.html.

Erata, F. et al. (2017b). ModelWriter: Text and Model-
Synchronized Document Engineering Platform. In
32nd IEEE/ACM Int. Conf. on Automated Software

Towards Better Document to Model Synchronisation: Experimentations with a Proposed Architecture

573



Engineering (ASE 2017), Urbana-Champaign, IL,
United States.

Goldschmidt, T. (2011). View-based Textual Modelling.
The Karlsruhe series on software design and quality.
KIT Scientific Publ.

Guta, G. (2012). Model-to-Text Transformation Modifica-
tion by Examples. PhD Thesis, Johannes Kepler Uni-
versity, Linz.

Haugommard, A. (2011). GenDoc - From Models to Doc-
uments. https://www.eclipse.org/gendoc.

Hettel, T., Lawley, M., and Raymond, K. (2008). Model
synchronisation: Definitions for round-trip engineer-
ing. In Proc. of the 1st Int. Conf. on Theory and Prac-
tice of Model Transformations, ICMT ’08.

Michot, A. and Ponsard, C. (2017). Doc2M on GitHub.
https://github.com/cetic/Doc2M.

Michot, A., Ponsard, C., Zhao, W., and Darimont, R.
(2016). RAWET - A generic REST API on top of
Eclipse CDO for web-based modelling. EclipseCon
France 2016, Toulouse, June 7-9.

Obeo (2011). M2DOc - Generate Word Documents From
Your Models. https://www.eclipse.org/gendoc.

Olsen, G. K. and Oldevik, J. (2007). Scenarios of Traceabil-
ity in Model to Text Transformations. In Proc. of the
3rd European Conf. on Model Driven Architecture-
foundations and Applications, ECMDA-FA’07.

OMG (1997). Unified modeling language. http://www.
omg.org/spec/UML.

OMG (2005). System modeling language. http://www.omg.
org/spec/SysML.

OMG (2008). Mof model to text transformation language.
http://www.omg. org/spec/MOFM2T.

Polarsys/CIS (2015). Capella - open source so-
lution for model-based systems engineering.
https://www.polarsys.org/capella.

Ponsard, C., Darimont, R., and Michot, A. (2015). Combin-
ing models, diagrams and tables for efficient require-
ments engineering : Lessons learned from the indus-
try. In Proc. INFORSID, Biarritz, France, May.

Respect-IT (2011). The objectiver tool - version 3.
http://www.objectiver.com.

Schmidt, D. C. (2006). Guest editor’s introduction: Model-
driven engineering. Computer, 39(2):25–31.

Steinberg, D., Budinsky, F., Paternostro, M., and Merks,
E. (2009). EMF: Eclipse Modeling Framework 2.0.
Addison-Wesley Professional, 2nd edition.

van Lamsweerde, A. (2009). Requirements Engineering -
From System Goals to UML Models to Software Spec-
ifications. Wiley.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

574


