
Modeling a Tool for Conducting Systematic Reviews Iteratively

Brice Bigendako and Eugene Syriani
DIRO, Université de Montréal, Montréal, QC, Canada

Keywords: Systematic Literature Review, Model-driven Engineering, Automatic Installation.

Abstract: Conducting systematic reviews (SR) is a time-consuming endeavor that requires several iterations to setup
right. We present ReLiS, a tool to automatically install and configure SR projects to conduct them collabora-
tively and iteratively on the cloud. ReLiS is engineered following a model-driven development approach. It
features a domain-specific modeling editor tailored for researchers who perform SR and an architecture that
enables on-the-fly installation and (re)configuration of multiple concurrently running SR projects.

1 INTRODUCTION

Publishing systematic reviews (SR) in areas of sci-
ence and engineering (e.g., software engineering,
medecine, social sciences) is considered essential in
research communities (Thomas et al., 2010). Such
secondary studies must be performed in a system-
atic and repeatable way, as proposed by guidelines
(Kitchenham and Charters, 2007). SR are difficult
and time consuming to conduct. In most cases, re-
searchers perform the process manually, with no tool
support (Imtiaz et al., 2013). A few SR tools exist to-
day (e.g., StArt, Parsifal, and EPPI-Reviewer) to help
manage references, perform screening, collect meta-
data, and report results of the study.

A recent community study identified a pressing
need for better tool support (Hassler et al., 2016).
One key feature of SR tools is the ability to cope with
the collaborative and iterative process of SR. Hence,
it is crucial that an SR tool can modify the SR pro-
tocol on-the-fly and reconfigure itself. Web appli-
cations offer a convenient technological foundation
for such flexibility. However, they mainly lack flex-
ibility on several ends: no iterative process is sup-
ported by piloting SR and they have a rigid config-
uration of projects that are hard to change (adding
validation phases, advanced data extraction forms).
This is where model-driven development (MDD) can
help by automatically synthesizing applications from
a domain-specific model (Kelly and Tolvanen, 2008).

In this paper, we follow an MDD approach to au-
tomatically configure and reconfigure an SR tool in
order to reach the desired protocol and adapt to the
needs of the secondary study. We have developed the

framework ReLiS1, which offers an integrated envi-
ronment based on a domain-specific language (DSL)
for installing and configuring SR projects so that a
group of researchers can conduct a SR collaboratively
using an application customized to their desired re-
search topic. The contribution of ReLiS is the holistic
solution to not only manage the SR process by track-
ing progress and storing related data, but also in its
flexibility to configure SR projects.

In Section 2, we briefly outline how SR are
conducted and how this is performed in ReLiS. In
Section 3, we explain how we use domain-specific
modeling and MDD to define configurations for SR
projects. Then, in Section 4, we describe the architec-
ture that enables the deployment of online SR projects
in ReLiS. In Section 5, we present a preliminary eval-
uation of ReLiS. We discuss related work in Section 6
and conclude in Section 7.

2 CONDUCTING SYSTEMATIC
REVIEWS

SR is a research strategy used to extract new knowl-
edge from existing studies. It follows a well-defined
process with a rigorous planning and methodological
execution to ensure unbiased results with a repeat-
able and auditable study. An SR can take the form
of a systematic literature review (SLR) to evaluate
and interpret all available studies relevant to a par-
ticular research question, topic area, or phenomenon
of interest (Kitchenham and Charters, 2007). It can

1http://relis.iro.umontreal.ca/.

552
Bigendako, B. and Syriani, E.
Modeling a Tool for Conducting Systematic Reviews Iteratively.
DOI: 10.5220/0006664405520559
In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), pages 552-559
ISBN: 978-989-758-283-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Search
studiesM

an
u
al

 b
y

u
se

r
A
u
to

m
at

ic
 i
n
 t

oo
l

Report

Validate
data

extraction

Assign
validation

Extract
data

Assign
data

extraction

Validate
QA

Assign
validation

Exclude
low

quality
studies

Assess
Quality

Assign
QA

Validate
screening

Assign
validation

Resolve
conflicts

Detect
conflicts

Screen
studies

Assign
screening

Import
Studies

Generate
SR Project

Define
Protocol

Validate?

[no]
[no]

[no]

[yes]

[yes]
[no]

[yes] [yes] Data
synthesis

Planning
phase

Screening phases QA phase Data extraction phase
Synthesis
Reporting

phase

Screening phase? Validate? Validate?

Figure 1: SR process in ReLiS.

also take the form of a systematic mapping studies
(SMS) to provide a wide overview of a research area
by classifying and performing a thematic analysis on
the topic (Petersen et al., 2008). Although these two
types of secondary studies have different intentions,
they share many commonalities in the way they are
conducted. The process of conducting SR is sepa-
rated into three phases consisting of actions to be per-
formed iteratively. The three phases are planning the
study by developping the protocol to follow, conduct-
ing the review by screening primary studies and ex-
tracting the relevant data, and reporting the results of
the analysis of the data.

2.1 SR Process in ReLiS

Figure 1 illustrates a typical workflow to use ReLiS
following proposed guidelines. The user starts by
planning the SR and sets up a project in ReLiS. He
creates a SR project by defining a configuration model
(detailed in Section 3) that automatically installs the
project on the cloud: a web application on the web
server and a dedicated database. The model plays
the role of the protocol of the SR and customizes the
steps of how the review will be conducted. As SR are
collaborative endeavors, the user can add participants
who will be conducting the review. Different roles can
be assigned, such as reviewers, validators, or project
managers, giving them increasing access rights.

Researchers search for primary studies outside
ReLiS, by querying digital libraries directly. After fil-
tering them, they can import them in their BibTeX,
EndNote or CSV formats. ReLiS stores the meta-
information of each paper (e.g., title, abstract, author,
venue, year) and a link to the full text. Each imported
study is tagged with its source and search strategy.

As soon as papers are in ReLiS, the participants
can start screening the corpus and decide which paper
to include or exclude, as depicted in Figure 2. Each
paper can be assigned automatically and randomly to
a fixed number of reviewers. ReLiS automatically de-

Figure 2: Screening form.

tects conflicting decisions between reviewers of the
same paper, so that they can resolve them according
to the strategy defined in the protocol. ReLiS sup-
ports multiple screening phases that each show spe-
cific meta-information.

Following the questions and answers defined in
the configuration model for quality assessment (QA),
ReLiS generates forms to assess the quality of in-
cluded studies. Studies are assigned to participants
with the validator role for assessment. ReLiS auto-
matically calculates the score of each study and flags
low quality ones for exclusion.

ReLiS automatically generates the data extraction
forms from the configuration model. Reviewers read
through each paper and fill the online form to clas-
sify or highlight relevant information of each retained
paper, as depicted in Figure 3. Like for screening,
papers can be automatically assigned to reviewers for
data extraction.

From this information, reviewers can explore the

Modeling a Tool for Conducting Systematic Reviews Iteratively

553

Figure 3: Generated data extraction form from Figure 5.

quantitative results in the form of graphs, charts and
tables in ReLiS. All the extracted data can be exported
to a CSV file to be used in more advanced statistical
tools (e.g., SPSS, Mplus, R, Excel). ReLiS can also
generate a partial report of the protocol: all the steps
effectively conducted during the SR.

If needed, ReLiS allows validators to validate re-
sults of the screening, QA or data extraction. It se-
lects a percentage of the processed papers at the corre-
sponding phase and randomly assigns them to another
reviewer for validation. The tool tracks the progress
and reports basic statistics for each phase, rendered as
tables and plots that can be exported for further anal-
ysis and used to produce the report of the review. Fur-
thermore, ReLiS supports an iterative process: new
papers can be imported at any time, project managers
can disable or re-enable a completed phase, and they
can modify the configuration of the project at any time
(e.g., modifying exclusion criteria or the classification
scheme). ReLiS supports the conduction of SLR or
SMS. Screening and QA are optional, for example if
the researcher only wants to collect data from a known
set of studies.

3 FLEXIBLE CONFIGURATION
OF SR PROJECTS

We motivate the use of MDD to configure SR projects
and present how we applied it in ReLiS.

3.1 MDD for SR Project Configuration

Our goal is to give the flexibility to users to config-
ure and install projects by themselves without prior
system administration skills. This is particularly use-
ful for SR tools when the SR process is iterative, be-

cause it is often impossible to plan the right proto-
col correctly from the beginning. The protocol needs
to be adapted as special cases are encountered dur-
ing screening and data extraction. First conducting a
pilot study is usually recommended to make sure all
participants have the same understanding of the pro-
tocol (Staples and Niazi, 2007).

Existing tools allow configuration via wizards
which is good for parameterizing but does not offer
flexibility to change the semantic of the project. By
using MDD, the process focuses on what varies in the
general guideline to a particular SR protocol. With
MDD, we can simplify the configuration process of
an SR project, by letting users specify a configuration
model that abstracts the specifications common to all
SR projects as well as the details related to underly-
ing implementation and infrastructure. Consequently,
users can perform minimal changes to the model to
adapt the configuration, but this may have a signifi-
cant impact on implementation (data base, code and
available functionalities), which remains seemless to
the user thanks to automatic code generation.

For these reasons, we opted for a MDD approach
by defining a DSL, which allows the user to edit how
the components specific to SR projects shall be con-
figured. To support this—possibly iterative—process,
users can customize the SR procedure in a controlled
way. The steps common to any SR procedure are
built-in ReLiS, with some level of customization,
such as the way conflicts are detected and resolved
during the screening phase. Furthermore, some steps
are specific to the particular SR project and to the re-
search question or area, e.g., the classification scheme
and data extraction form.

3.2 Configuration DSL

In the planning phase, the SR project is configured in
ReLiS through a DSL. We define the metamodel of
the DSL presented in the class diagram in Figure 4.
It offers customizations points to the process outlined
in Section 2.1. The central entity is the SR Project
identified by a unique name. It is composed of four
main elements.

When a Screening step is desired, the user can
configure how papers are assigned to reviewers, inclu-
sion and exclusion criteria. He can also define what
happens in case of conflict decisions among review-
ers of the same paper. Two types of conflicts are
supported: either if one reviewer excludes a paper
that another has included, or if the exclusion criteria
do not match. A screening conflict of a paper is re-
solved either by having a unanimous decision among
reviewers or if the majority agree. If the validation

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

554

 name : ID
 title : string

Project

reviews_per_paper : int = 2
exclusion_criteria : string
inclusion_criteria : string
conflict_type : ConflictType = IncludeExclude
conflict_resolution : ConflictResolution = Unanimous
validation_percentage : int = 20
validation_assignment_mode : AssignmentMode = Normal

Screening

DataExtraction name : ID
 title : string
 mandatory : boolean
 number_of_values : int = 1

Category

 cutt_off_score : int

QA

 text : string

Question

 value : string
 score : int

Answer

1..*
1

1..*

1..*

0..1

compare

1
sub_categories

0..1

1 depends_on

*

1

Normal
Veto
Info

<<enumeration>>
AssignmentMode

Majority
Unanimous

<<enumeration>>
ConflictResolution

 IncludeExclude
 ExclusionCriteria

<<enumeration>>
ConflictType

 Title
 Abstract
Paper
 Author

Field Number
 Text
 String
 Boolean
 Decimal
 Date

SimpleType

title : string
description : string
fields : Field [1..*]

Phase

 Bar
 Pie
 Line

<<enumeration>>
ChartType

<<enumeration>>

0..1

1..*

<<enumeration>>
<<enumeration>>

 Reference

DependantDynamicCategory

 type : SimpleType = String
 pattern : string
 max_char : int
 initial_value : string

FreeCategory StaticCategory
 reference_name : string

IndependantDynamicCategory

 value : string

Value

2..*
*

initial_values

Note

CompareGraph

Synthesis

 name : ID
 title : string

Chart

 chart : ChartType [1..*]
1..*

base

Figure 4: Project configuration metamodel.

of a screening phase is enabled, the user can define
what proportion of the excluded papers will be vali-
dated randomly. He can also state how the decision
of the validator is to be treated: as another voting re-
viewer, whether his decision overrides all others, or it
is simply used to notify the other reviewers. It is pos-
sible to configure the screening iteratively into phases
where specific (meta-)information of each paper will
be available to the reviewer. Screening is optional in
ReLiS to support the use case when the user has al-
ready selected his papers and is only interested in ex-
tracting data from them.

When a QA step is desired, the user has to define
the questions and the possible answers (associated
with a score) to build the QA check-list for each in-
cluded paper. A cutt off score identifies the mini-
mum score for which papers are considered of accept-
able quality.

The DataExtraction defines what categories to
collect in the form of each paper. For instance, this
corresponds to the classification scheme of a SMS.
The metamodel supports four type of categories. A
FreeCategory allow users to freely enter a value,
subject to a specific type (text, boolean choice, nu-
merals, etc.) or to some additional constraints (length,
regular expression, etc.). A StaticCategory offers
to choose a value from a predefined list of values,
the list cannot be updated while conducting the re-
view. An IndependantDynamicCategory is like a
StaticCategory, but the list can be updated during
the SR process. A DependantDynamicCategory is
similar to the former, but the allowed values must
come from values entered for another category. Each
category is identified by it name. It can have a single

or multiple values, and can also be mandatory to fill
in the form. A category be more complex and contain
subcategories, in which case a distinct form will be
generated for it.

Finally, the project may specify a data Synthesis
to define how the extracted data will be synthesized
into charts. Various chart types are supported. A chart
may render data from a single category or plot the
relation between data from different categories.

3.3 SR Project in ReLiS

Figure 5 shows the online editor in ReLiS of the con-
figuration model that was used to generate the project
for a SMS on model transformation. That model is
an instance of the metamodel presented on Figure 4.
We chose to use a textual concrete syntax because the
configuration follows a linear layout (following each
phase) and to improve editing of the model (e.g., copy,
paste).

In this SMS, the study selection shall be con-
ducted in two screening phases (lines 8–10). A first
phase screens papers according to their title only, fol-
lowed by a second phase where the title, abstract and
a link to the full content of the paper is available. Fig-
ure 2 shows the screening form generated for the sec-
ond phase.

There is also a QA phase (lines 12–15) with two
question and three possible answers per question for
each paper. If the sum of the answer values is below
5 for a paper, then it will be considered low quality.

The following section configures the data extrac-
tion form generated in Figure 3. Line 18 generates
a text field to collect the name of a model transfor-

Modeling a Tool for Conducting Systematic Reviews Iteratively

555

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

PROJECT mt "Model transformation"

SCREENING
Reviews 2
Conflict on Criteria resolved_by Unanimity
Exclusion Criteria = ["Less than 4 pages","Not using model transformation"]
Validation 20% Normal
Phases
"Phase 1" "Screen per title"Fields(Title) ,
"Phase 2" "Screen per title and abstract " Fields(Title, Abstract, Paper)

QA
Questions =["Does the study have validation?","Are RQs cleary stated?"]
Answers=["Yes":3 , "Partially":1.5 , "No":0]
Min_score 5

DATA EXTRACTION
Simple transformation_name "Transformation name"* [1] :string(100)
DynamicList trans_language "Transformation Language"* [1]=["Motif","ATL","Henshing","QVT"]
List scope "Scope" [1] =["Exogenous","Inplace","Outplace"]
Simple bidirectional "Bidirectional" :bool
DynamicList intent "Intent" * [0] = ["Translation", "Simulation", "Migration"] {
 Simple name_used "Name used by the author" * :string(100)
 }
DynamicList intent_relation "Intent relation" * [0] "Relation" = ["Sequence", "Inverse"] {
 DynamicList intent_1 "Intent 1" * depends_on intent
 DynamicList intent_2 "Intent 2" * depends_on
 note
 }
note

SYNTHESIS
1dChart scope "Scope" on scope charts(Pie, Bar)
2dChart year_scope "Scope per year"on scope per year charts(Line)

bidrectional i i[FreeCategory]
intent ii[IndependentDynamicCategory]
intent_1 i i[DependentDynamicCategory]
intent_relation [IndependentDynamicCategory]
scope i i[StaticField]
trans_language [IndependentDynamicField]
transformation_name g ii[FreeCategory]

F

I

D

I

S

F

I

Figure 5: Project configuration model in ReLiS in its textual concrete syntax.

mation with at most 100 characters. It is a manda-
tory field (with the ‘*’) and can only have a sin-
gle value (‘[1]’). The transformation language field
on line 19 is an IndependantDynamicCategory pre-
populated with a list of four language names. Line
20 generates a drop down list (StaticCategory) to
collect the scope of the transformation which must
be one of three choices. The intent relation field
has subcategories (between ‘{...}’) (line 25). It is
allows for an arbitrary number of values (‘[0]’).
On line 26, it has a subcategory Intent 1 that is
a DependantDynamicCategory for which the value
must be one of those entered for the Intent field on
line 22. ReLiS comes with predefined categories that
can be reused, such as note (line 30).

The data synthesis is specified in lines 34–36. The
first statement will synthesize data extracted for the
scope into a bar chart and a pie chart. The second one
will synthesize data for the scope on the Y-axis per
year on the X-axis.

3.4 Generation of a Configuration

We implemented the DSL with a textual concrete
syntax using Xtext (Bettini, 2013). The model ed-
itor is completely integrated inside ReLiS thanks to

DSLFORGE (Lajmi et al., 2014) which generates on-
line lightweight text editors from an Ecore metamodel
and an Xtext grammar.

To install projects in ReLiS, we developed a
template-based code generator in Xtend (Bettini,
2013) to produce the installation file from the model,
as illustrated in the bottom part of Figure 6. This pro-
cess initiates the installation of the project in ReLiS.
The presented approach ensures a natural continuum
to the user who can operate the tool for its intended
purpose (i.e., conducting SR), as well as instantly in-
stall new projects or reconfigure existing ones.

4 ARCHITECTURE TO
RECONFIGURE PROJECTS

Apart from supporting SR activities, a tool for SR has
to allow collaboration among researchers and manage
tenancy of multiple SR projects.

Common web content management systems
(CMS), e.g., Joomla, follow a Model-View-Controller
(MVC) architecture. However, the traditional MVC
implemented in CMS has two issues. First, as pointed
in (Priefer et al., 2016), this architecture brings a
certain overhead and schematically redundant code

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

556

which requires more effort in manually developing
these extensions. Second, it requires to manually in-
stall the extensions and link them to the CMS. This
means that every time one needs to change a function-
ality that is beyond simple user interface customiza-
tions, the user needs to re-install the extension. To
solve these issues, we implemented a dynamic MVC
architecture, illustrated in Figure 6.

4.1 Dynamic MVC Architecture

Configuration
files

Project
specific

Common Databases

select + query

generate generate

generateread ReLiS
Project model

Installer

Controller

Installation
file

select + read

select + query

select + bind data

Models

Queries

Views

Page template

Controllers
Dedicated

Entity Manager

Project
specific

Admin

Figure 6: Architecture for dynamic MVC.

On top of models, views and controllers, we added
the concept of entity in ReLiS, which represents the
instances managed by the application (papers, users,
authors, etc.). To ensure reusability and maintainabil-
ity, a particular type of controller is dedicated to man-
aging entities: the entity manager. There is one entity
manager controller for each operation, such as adding,
modifying, removing, listing, or viewing the details of
an entity, parameterized by the entity type. For exam-
ple, a controller is responsible for viewing the details
of the meta-data of a paper (Figure 2), another one for
modifying the classification of a paper (Figure 3), and
a last one for listing the results of the classification
(e.g., charts). The specificities of entities are encoded
in entity configuration files.

An entity configuration specifies the characteris-
tics of an entity. It defines its attributes (e.g., name, ti-
tle), the models and stored procedures to invoke when
retrieving, adding or updating data, and the way data
will be displayed in web pages with the navigation
logic between entities, i.e., the views.

What makes this MVC architecture dynamic is
that the semantics of controllers is defined in PHP
configuration files with controllers implemented as
generic PHP classes making them independent from
the entities they operate on: the same controller class
can list all papers and all authors. There are other

controllers dedicated to specific operations, such as
the installation of projects and user authentication.

The advantage of this architecture is that it allows
to change the application behavior by just using con-
figuration files. To maximize reuse and modularity,
the architecture of ReLiS contains components com-
mon to all SR projects and components specific to
individual ones. Common configurations, which are
built-in ReLiS, include, for example, how papers and
users are configured. Project-specific configurations
include how the data extraction form is configured.
Although this distinction is useful conceptually, the
architecture does not distinguish them and treats them
alike. This facilitates the integration of new configu-
rations and databases without having to modify any
of the existing code. Furthermore, the advantage of
using an interpreted language like PHP prevents the
need to re-compile every time a new component is
added.

4.2 On-the-fly Installation of ReLiS
Projects

ReLiS is able to host multiple SR projects operated
concurrently. To add a new SR project in ReLiS, the
user defines a project configuration model (c.f. Sec-
tion 3) which is automatically generated as an instal-
lation file. The latter defines entity types and their
attributes on which entity controllers operate. The
installation file also describes what information will
be rendered on the screen, constrains the domain of
each attributes, and defines information relevant to
the database that will store the data of that project.
As depicted in Figure 6, the installer is a controller
that generates the configuration file corresponding to
the installation file it reads in. It also creates a new
database for the project, with tables and columns cor-
responding to entities, and the necessary stored pro-
cedures.

ReLiS allows a user to make modifications to a
project while in operation. The presented architec-
ture makes it relatively easy to add new entities or
attributes (e.g., adding a new category in the data ex-
traction form). However, deletion may corrupt the
data already present in the application. The policy we
adopted for is to only delete elements from a project
if they do not contain any data yet. Otherwise, the
element is deactivated but the data it contains is still
retained in the database. This also allows to revert cer-
tain actions in case of erroneous manipulation. Edi-
tion of elements, such as renaming, are considered
as deletions and additions. Nevertheless, we could
detect changes that do not corrupt the data, such as
augmenting the length of a string in a simple cate-

Modeling a Tool for Conducting Systematic Reviews Iteratively

557

gory. However, performing such detections strongly
couples ReLiS to the underlying database used, which
hampers its portability.

The tool logs all major operations performed by
the user, so he can revert them, e.g., remove a spe-
cific set of wrongly imported papers or clear the re-
sults of a screening phase, especially when there are a
lot of disagreements in the study selection among the
reviewers.

5 EVALUATION OF RELIS

We have performed a preliminary informal qualita-
tive evaluation of the correctness of the implementa-
tion and the usefulness of the architecture decisions
in ReLiS. In the context of a graduate course on em-
pirical methods in software engineering at our univer-
sity, all students are required to conduct a SMS on
different research topics as part of their project. In the
Fall 2016 edition, there were in total 8 groups of 3
to 4 students with no previous experience in conduct-
ing SR. Students were asked to use ReLiS for their
SMS project. This allowed us to have test subjects
to verify that the tool was functionally correct. This
also gave us the opportunity to assess whether the
category types, to generate the data extraction forms,
built-in ReLiS are sufficient to cover all eight SMS.
All groups used every type of category, but none ap-
plied advanced constraints.

We were also interested in determining how on-
the-fly installation and configuration of projects was
used. For that, we extended ReLiS to log every in-
stallation of projects, while tracking the modifications
performed in the project-specific model. We noted
that all re-installations were aimed at improving the
classification scheme, since the screening procedure
should be fixed from the beginning and changing it
during the process may bias the SR. Students found
that automatically re-installing their project was very
helpful. This was expected because, during the learn-
ing process, they required several iterations before ar-
riving at the desired classification scheme. The most
positive feedback was that they were able to re-install
a modified project without loosing the information on
papers they had already classified. However, we noted
a larger amount of deactivated categories than antic-
ipated. We discovered that it was mainly because of
misunderstanding the syntax of the DSL.

6 RELATED WORK

There are several tools designed to support the con-
duction of SR that were surveyed in (Marshall and
Brereton, 2013; Al-Zubidy et al., 2017). Some tools
specialize only in some desirable SR features, such
as reference management and text-mining techniques
to help extract relevant data from papers (Felizardo
et al., 2010). Other tools are more specific to how
SR are conducted in software engineering and aim to
support the whole SR process. However, they still
have important features not properly supported. Par-
sifal2 is the most similar tool to ReLiS. It is an online
tool that allows researchers to conduct only SLR col-
laboratively. However, it only provides simple cat-
egory types for the data extraction forms and does
not support, for instance, dependent lists or subcate-
gories. SLRTOOL (S. Barn et al., 2014) also supports
the whole SR process, but does not allow for multiple
screening phases and requires adding studies manu-
ally. The key difference of all these tools and ReLiS
is the flexibility of modifying the configuration of the
SR procedure on-the-fly, which makes it able to pilot
reviews. It is the only tool that uses MDD to adapt
the tool to a specific SR by customizing the whole SR
process and to generate the most advanced data ex-
traction forms thanks to that DSL.

(Barat et al., 2017) have used MDD to support SR.
They designed a DSL to represent research literature,
with a metamodel to describe the core concepts of the
review and associated process. However, their DSL is
only used to collect the data of the SR process, not to
generate a tool like ReLiS.

Related to the architecture of our approach, CMS
are very generic frameworks that heavily rely on ex-
tensions developed outside the tool environment, as
discussed in Section 4. ReLiS project configuration
models are designed within ReLiS which requires no
client-side installation of any tool, as it runs com-
pletely in a web browser, and projects are installed
automatically. Base platforms to build web applica-
tions (e.g., Joomla and WordPress) support easy in-
stallation of custom extensions. However, their de-
velopment requires the user to install the appropriate
tooling and programming environment. Also, they are
very generic and provide too many options that are
not used in specific application domains, such as SR.
The closest work to ours in using MDD for updat-
ing exiting application with on-the-fly installations is
JooMDD (Priefer et al., 2016). It relies on a DSL
where models get automatically generated as Joomla
extensions, in order to raise the level of abstraction
for web extensions development.

2https://parsif.al/

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

558

7 CONCLUSION

In this paper, we present ReLiS, a framework to au-
tomatically install and conduct SR projects collabora-
tively on the cloud. Its generic and dynamic architec-
ture allows users to install projects during the process
of a SR without manual intervention. Using MDD, a
web-based modeling editor specific to SR empowers
users to directly configure and install their project by
themselves. Compared to other existing tools, ReLiS
covers the most features, but lacks integrated search
of studies, automated text analysis, and keyword ex-
traction. It is freely available to be used online.

Our goal is to make this SR tool accessible to non-
computer science researchers. We therefore plan to
provide a more intuitive syntax for the configuration
DSL and improve the feature coverage of ReLiS.

REFERENCES

Al-Zubidy, A., Carver, J. C., Hale, D. P., and Hassler, E. E.
(2017). Vision for SLR tooling infrastructure: Pri-
oritizing value-added requirements. Information and
Software Technology, 91:72–81.

Barat, S., Clark, T., Barn, B., and Kulkarni, V. (2017).
A model-based approach to systematic review of re-
search literature. In Innovations in Software Engineer-
ing Conference, pages 15–25.

Bettini, L. (2013). Implementing Domain-Specific Lan-
guages with Xtext and Xtend. Number 2. Packt Pub-
lishing.

Felizardo, K., Nakagawa, E., Feitosa, D., Minghim, R., and
Maldonado, J. C. (2010). An Approach Based on Vi-
sual Text Mining to Support Categorization and Clas-
sification in the Systematic Mapping. In EASE, pages
34–43. British Computer Society.

Hassler, E., Carver, J. C., Hale, D., and Al-Zubidy, A.
(2016). Identification of slr tool needs–results of
a community workshop. Information and Software
Technology, 70:122–129.

Imtiaz, S., Bano, M., Ikram, N., and Niazi, M. (2013). A
tertiary study: Experiences of conducting systematic
literature reviews in software engineering. In EASE,
pages 177–182. ACM.

Kelly, S. and Tolvanen, J.-P. (2008). Domain-Specific Mod-
eling: Enabling Full Code Generation. John Wiley &
Sons.

Kitchenham, B. and Charters, S. (2007). Guidelines for
performing Systematic Literature Reviews in Soft-
ware Engineering. Technical Report EBSE 2007-001,
Keele University and Durham University Joint Report.

Lajmi, A., Martinez, J., and Ziadi, T. (2014). DSLFORGE:
Textual Modeling on the Web. In Demonstrations at
MODELS, volume 1255. CEUR-WS.org.

Marshall, C. and Brereton, P. (2013). Tools to Support Sys-
tematic Literature Reviews in Software Engineering:
A Mapping Study. In ESEM, pages 296–299. IEEE.

Petersen, K., Feldt, R., Mujtaba, S., and Mattsson, M.
(2008). Systematic Mapping Studies in Software En-
gineering. In EASE, pages 68–77. British Computer
Society.

Priefer, D., Kneisel, P., and Taentzer, G. (2016). JooMDD:
A Model-driven Development Environment for Web
Content Management System Extensions. In ICSE
Companion, pages 633–636. ACM.

S. Barn, B., Raimondi, F., Athappian, L., and Clark, T.
(2014). Slrtool: A tool to support collaborative sys-
tematic literature reviews. In ICEIS, volume 2, pages
440–447. SCITEPRESS.

Staples, M. and Niazi, M. (2007). Experiences using sys-
tematic review guidelines. Journal of Systems and
Software, 80(9):1425–1437.

Thomas, J., Brunton, J., and Graziosi, S. (2010). EPPI-
Reviewer 4.0: software for research synthesis. Tech
report, University of London, EPPI-Centre, Social
Science Research Unit, Institute of Education.

Modeling a Tool for Conducting Systematic Reviews Iteratively

559

