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Abstract: The existing algorithms to reconstruct hyperspectral compressive sensing images mainly use the sparse 

property of spatial information and some simple non-adaptive spectral constraint such as the low-rank 

property. However, these strategies cannot remove the spectral redundancy efficiently and a new method to 

make full use of the abundant redundancy of spectral information and improve the quality for hyperspectral 

CS reconstruction is necessary. A new CS sampling and reconstruction model based on spectral sparse 

representation was proposed in this paper. The spectral sparse dictionary was constructed from training 

samples to enhance the effect of sparse representation and the total variation constraint of spatial images was 

also considered to further enhance the precision during the reconstruction. The experiment to reconstruct 

AVIRIS hyperspectral images of 200 bands show that the hyperspectral image was almost perfectly 

reconstructed at 25% sampling rate and the spatial and spectral precision was higher than traditional methods 

which only adopt the spatial sparsity and simple non-adaptive spectral constraint in the same condition. 

1 INTRODUCTION 

Hyperspectral remote sensing technique has the 

ability to acquire and analyze the physical and 

chemical properties of land surface objects. Over the 

past 30 years it has witnessed a great progress in 

various fields such as atmosphere monitoring, ocean 

monitoring, mineral exploration, precision agricul-

ture and target detection. However, hyperspectral 

images have much larger amount of data which makes 

data transmission, storage and onboard processing 

more difficult. Furthermore, the optics system will 

also become more complicated and costly with the 

improvement of resolution. As far as the traditional 

imaging system based on Nyquist sampling theory is 

concerned, it is almost impossible to conquer the 

contradiction between high efficiency and high 

resolution demand. Therefore, new theory is expected 

to be developed so as to promote more efficient 

application of hyperspectral remote sensing. 

As a novel theory in signal processing, 

compressive sensing (CS) theory which integrates 

compression and sampling process has drawn much 

attention in many fields including remote sensing 

imaging (Donoho, 2006). By concerning the sparse 

characteristic of the object, images can be 

reconstructed from very few measurements. 

Therefore the size and complexity, as well as the on-

orbit computational cost of the CS imaging system is 

much lower than conventional systems, making it a 

very promising application in the remote sensing (Li, 

2014). A. Wagadarikar (2008), Thomas A. Russell 

(2012), and J. Wu (2014) have developed various CS 

spectral imaging systems respectively. 

The images of CS imaging system are 

reconstructed from compressive measurements by 

solving specific optimization problem. The sparse 

characteristics of target signal is the foundation of CS 

reconstruction: the better the signal is sparsely 

represented, the higher reconstruction precission 

would be obtained. The total variation (TV) model 

based on the sparsity of two dimensional discrete 

gradient was widely used to reconstruct spatial 

images (Combettes, 2014). However, in the 

hyperspectral remote sensing imaging which 

demands for higher compression rate, the 
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reconstruction effect of non-adaptive total variation 

model is usually dissatisfied. There is strong 

correlation among the bands of hyperspectral image. 

Regarding to this characteristic, several constraint 

models using spectral correlation had been proposed. 

Zhang et. al. extended the traditional two-

dimensional TV model to 3 dimensions in order to 

reconstruct hyperspectral images (Zhang, 2014). 

Feng et. al. (2012) used the current reconstructed 

band as the reference to predict the following band. 

Liu et. al. (2011) presented the hyperspectral 

reconstruction algorithm based on the prediction of 

the residual vector. Golbabaee et. al.  (2012) applied 

the low-rank property of hyperspectral data bands and 

reconstructed the image by adding the nuclear norm 

to the constraint model. Jia et. al. (2014) put forward 

a structural-relation-based model via researching the 

spectral statistical correlation of hyperspectral image. 

These spectral correlation models do enhance the 

reconstruction precision to some extent, but the 

spectral constraint models are relatively simple and 

non-adaptive, thus the detailed spectral information is 

difficult to be reconstructed correctly at a low 

sampling rate. This shortage is more notable for the 

hyperspectral scenes with a wider spectral range and 

more bands of data.  

Actually, most of the earth surface spectrum 

possesses piecewise smooth property with a large 

amount of redundant information. The spectral 

information redundancy is usually more abundant 

than that of the complex spatial information and is not 

well removed using the available methods such as 

neighboring band prediction or low-rank 

minimization of the HSI data. On the other hand, the 

sparse representation theory suggests that, the signals 

can be precisely represented by very few atoms from 

some kinds of dictionaries that can highly reduce the 

information redundancy. Recently some researchers 

applied the sparse representation theory in the 

hyperspectral fields such as spectral classification, 

unmixing, and reconstruction (Zare, 2012, Charles, 

2011, Wang, 2013). By exploiting the spectral sparse 

property, researchers obtained better results than 

conventional methods, making it an effective way to 

process HSI data.  

On such basis, the sparse representation theory is 

introduced to reconstruct compressive sensing 

hyperspectral images in this paper and a new 

hyperspectral sampling model is proposed to 

precisely reconstruct the images in the CS scheme. In 

Section II, the sparse representation theory and the 

method of spectral sparse dictionary learning are 

discussed. In Section III, the principles of spectral 

compressive sensing model and the hyperspectral 

image reconstruction algorithm based on the spectral 

sparse dictionary are presented. In Section IV, the 

experiment of sampling and reconstructing the 

AVIRIS scene is conducted, and our method as well 

as three different hyperspectral reconstruction 

methods is applied in comparison. In Section V, the 

content of this paper is concluded and the problems 

and prospects are analyzed. 

2 SPECTRAL SPARSE 

DICTIONARY LEARNING 

Suppose x is a signal of length N and D=[d1,d2,…dK] 

is a set of basis (also called as dictionary) in the N-

dimensional Euclidean space. If x can be linearly 

represented by the L atoms in the dictionary (usually 

L<<K, N), then we declaim that x has a sparse 

representation in the dictionary D, the sparsity level 

is L. That is 

1

, 1,2...
i

L

i i

i

x d K  


  
       

(1) 

where ε is the residual error of the sparse 

representation. (1) can be rewritten in the matrix form: 

x Ds                  (2) 

In which s, called as the sparse coefficient, is the 

coordinate vector with only L non-zero elements. The 

process to calculate s is called as sparse coding and it 

solves the minimization problem:  

0
min , . .s s t x Ds

          
(3) 

where || • ||0 denotes the number of non-zero 

elements and (3) can be solved by several algorithms. 

A more important question of the sparse 

representation is the way to construct the dictionary. 

In the area of signal and image processing, DCT 

dictionary, wavelet dictionary and Gabor dictionary 

are usually adopted. The atoms in these dictionaries 

are fixed and hard to be adjusted adaptively, which 

results in the limitation that more efficient and 

accurate decomposition is needed for hyperspectral 

CS reconstruction. In recent years the adaptive 

dictionary training method from the characterized 

sample set is developed and used in the sparse 

dictionary construction by many researchers. The 

dictionary learning method is an adaptive approach 

for complex signals and usually achieves a better 

result than conventional dictionaries such as DCT and 

wavelet. The main idea of dictionary training is to 

find a matrix that ensures each sample in the training 
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set a sparse representation by such matrix. The 

sparsity level and the residual error in the 

representation are the optimization goal in the 

calculation. For the hyperspectral dictionary 

construction in this paper, the spectral sparse 

dictionary model is presented as 

2 0,
min . . i
D X

W DS s t i s L  
      

(4) 

where the matrix W is composed by the column 

vectors of spectral sample set that are extracted from 

hyperspectral scenes, D and S are the sparse 

dictionary and the coefficients to be solved 

respectively, and L is the sparsity level control 

parameter. The solving process of (4) consists of two 

key steps called as sparse coding and dictionary 

updating. The sparse coding step is to solve the sparse 

coefficients S under the dictionary D and the updating 

step is to adjust D according to the new coefficients. 

The two steps are executed alternatively until 

convergence. Based on the different approach to 

realize dictionary updating, a series of dictionary 

learning algorithms such as KSVD, MOD and RLS 

are presented (Aharon,2006, Mairal, 2009, Skretting, 

2010). Here we choose the KSVD algorithm as the 

dictionary learning algorithm and fast OMP as the 

sparse coding algorithm for their relatively high 

accuracy and efficiency (Azimi, 2014). 

3 HYPERSPECTRAL SAMPLING 

AND RECONSTRUCTION 

Suppose the matrix X represents a hyperspectral data 

cube, with N=n1*n2 spatial pixels and B spectral 

bands. The compressive sampling of hyperspectral 

object is conducted in the spatial region usually. xi 

denotes for the column vector with length N expand-

ing from the i-th band image, and yi denotes for the 

corresponding measurements. To sample the scene by 

the linear mixing matrix P in each band, we have 

1 2 1 2[ , ,..., ] [ , ,..., ]B By y y P x x x     (5) 

The usual way to solve (5) is to reconstruct each 

spatial image in the constraint of total variation and 

adjust the solution based on the spectral correlation 

model. As pointed before, the spectral sparse property 

with a large amount of information redundancy is not 

exploited sufficiently in this model. Therefore, we 

propose a new sampling scheme in the spectral region. 

λi denotes the spectral data vector with length B of the 

i-th spatial pixel and yi denotes the corresponding 

compressive measurements. The sampling process is 

applied in the whole spatial region, that is  

1 2 1 2[ , ,..., ] [ , ,..., ]N Ny y y P   
     

(6) 

And the hyperspctral scene is reconstructed based 

on (6). 

In the spectral sparse model of Section II, the 

spectral signal in (6) can be decomposed as the 

product of sparse dictionary and coefficients, that is 

, 1,2,...,i iDs i N  
         

(7) 

Define matrix A=PD and put (7) into (6): 

i i iy PDs As 
            

(8) 

And the sparse coefficients si is determined from 

solving the optimization problem 

0
min , . .i i is s t y As

         
(9) 

As the sparse representation error is unavoidable, 

(9) is presented as an unconstrained optimization 

problem with the regularizer β0: 

2

02 0

1
min

2i
i i i

s
y As s 

       

(10) 

The optimization of the l0 norm is a NP hard 

problem. Therefore we use smooth Gaussian function 

to approximate the l0 norm and convert the problem 

to classical convex optimization problem which can 

be solved via gradient descent pursuit algorithm. The 

detailed steps are presented in (Mohimani, 2007). 

Solve (10) for the spectrum in each pixel and 

calculate the reconstructed spectrum via (7) and 

arrange all the spectrum into a three dimensional 

matrix to construct the raw reconstructed 

hyperspectral data cube X0. The accuracy of spatial 

information of the reconstructed image is hard to 

guarantee with the spectral constraint only. Therefore 

the raw reconstructed data is revised in the constraint 

of total variation to solve the optimization problem 

with the regularizer β1: 

2

12

1
min

2j
j j j TVx

x x x


  
        

(11) 

in which xj is the j-th band spatial image of X0 and 

x’j is the revised image in the constraint of total 

variation. The TV norm represents for 

11i i i n iTV
i

x x x x x    
      

(12) 

Solve (12) for each band in X0 to construct the 

data cube X’ by applying the algorithm in 

(Chambolle,2004) and further revise the spectrum via 
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solving the optimization problem which is similar to 

(10): 

2 2

22 2 0

1 1
min

2 2i
i i i i i

s
y As s s s   

   

(13) 

Calculate (11) and (13) alternatively to revise 

spatial and spectral solution of the reconstructed 

scene until the convergence is reached: 

2
'

2

2

2

0.001
X X

X




           

(14) 

4 EXPERIMENTS AND RESULTS  

Spectral Dictionary Learning: The spectral data from 

the remote sensing images acquired by AVIRIS 

hyperspectral imagery at the range of 0.4-2.5 μm is 

selected as the dictionary learning samples. The 

sample set contains 5000 spectrums from 38 types of 

ground objects in the scene Indian pines, Salinas, 

Cuprite and Kennedy Space Center. Since some 

bands are influenced by water vapor absorption, 24 

bands are discarded and the data of 200 bands are 

used eventually. The spectral data is normalized to 

avoid the difference of the intensity in the different 

scene and some types of training samples are shown 

in Fig. 1. In the dictionary training algorithm we set 

the sparsity level L=5, the iteration times T=30, and 

the number of atoms K=400. The parameters are 

selected from many experiments considering both the 

efficiency and precision of the algorithm, while the 

influence of the parameter changing on the dictionary 

and the method to decide the best parameter is yet to 

be further studied. 

Experiment 1: The experiment scene to be 

reconstructed is selected from the area of Indian Pines 

containing 128*128 pixels (the test area is not 

included in the training set). The compressive 

sampling is conducted to the scene by the random 

Bernoulli matrix that has good incoherence property 

and is sustainable by hardware. The sampling rate is 

25%, and Gaussian noise of 40dB SNR is added to 

the measurements. The original data of 200 bands are 

compressed to 40 bands after sampling.  

The algorithm presented in Section III is applied 

to reconstruct the hyperspectral scene from the 

compressive measurements. The regularizers of β0, β1 

and β2 are set to 0.4, 0.1, and 0.1 respectively. In 

contrast, three different hyperspectral CS 

reconstruction algorithms are also tested including 

TV algorithm in (Combettes,2004), TVSS algorithm 

in (Liu,2011) and TVNU algorithm in 

(Golbabaee,2012). Fig. 2 shows the reconstructed 

image of the 100th band via the four algorithms in the 

same experimental condition. The quality of the 

reconstructed image by the proposed method is 

significantly better that other algorithms and it 

effectively avoids the over-smoothing problem 

blurring the image details by TV constraint 

algorithms.  

 

Figure 1: Some types of spectrum in the training set 

extracted from AVIRIS data containing 200 valid bands. 

The spectral intensity is normalized. 

The spectral curve of corn in the scene is 

compared before and after reconstruction in Fig.3 via 

different algorithms. The reconstructed spectrum by 

the proposed method achieves very high accuracy 

with little deviation. In contrast, the TV algorithm 

fails at some bands and makes the spectrum 

discontinuous due to the lack of constraint in the 

spectral region. The TVSS and TVNU algorithm with 

spectral constraint maintain the continuity of the 

reconstructed spectrum to some extent, but there are 

apparent errors in some details especially at the 

wavelength 0.5-1.0μm where the spectrum has a wide 

fluctuation.  

Experiment 2: Change the sampling rate and 

reconstruct the hyperspectral scene via different 

algorithms. The sampling rate is set from 10% to 50%. 

To assess the reconstruction precision, two 

parameters represented for space and spectrum 

respectively are calculated for each reconstructed 

hyperspectral scene. One is the mean value of the root 

square error (RMSE) of each spatial band and the 

other is the mean value of the spectral angle (MSA) 

between the reconstructed spectrum and the original 

one. The result is shown in Fig.4. The precision of the 

reconstructed scene via the proposed method is better 

than other algorithms in both spatial region and 

spectral region. The advantage of our method is more 

dominant especially at low sampling rate due to the 

precise sparse constraint in the spectral region.  
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(a)                  (b)                  (c)                   (d)                 (e) 

Figure 2: The 100th band reconstructed image from the AVIRIS scene Indian pines via different algorithms from 

25%sampling measurements. (a)Original image. (b) Our method. (c)TV algorithm. (d)TVSS algorithm. (e)TVNU algorithm.

 
(a)                                           (b) 

 

(c)                                          (d) 

Figure 3: The corn spectrum in the AVIRIS scene Indian pines before and after reconstruction via different algorithms from 

25%sampling measurements. (a) Our Method. (b)TV algorithm. (c)TVSS algorithm. (d)TVNU algorithm. 

 

(a)                                       (b) 

Figure 4: The quality assessment parameters of the reconstructed hyperspectral image at different sampling rate varying from 

0.1 to 0.5 in the same CS experiment. (a) The RMSE value to assess spatial reconstruction quality. (b)The MSA value to 

assess spectral reconstruction quality. 

0.5 1 1.5 2 2.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Wavelength(μm)

N
o

rm
al

iz
ed

 i
n

te
n

si
ty

 

 

True spectrum

Reconstructed spectrum

0.5 1 1.5 2 2.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Wavelength(μm)

N
o

rm
al

iz
ed

 i
n

te
n

si
ty

 

 

True spectrum

Reconstructed spectrum

0.5 1 1.5 2 2.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Wavelength(μm)

N
o

rm
al

iz
ed

 i
n

te
n

si
ty

 

 

True spectrum

Reconstructed spectrum

0.5 1 1.5 2 2.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Wavelength(μm)

N
o

rm
al

iz
ed

 i
n

te
n

si
ty

 

 

True spectrum

Reconstructed spectrum

0.1 0.2 0.3 0.4 0.5
0

0.005

0.01

0.015

0.02

0.025

Sampling Rate

R
M

S
E

 

 

Our Method

TV

TVSS

TVNU

0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Sampling Rate

M
S

A

 

 

Our Method

TV

TVSS

TVNU

Hyperspectral Compressive Sensing Imaging via Spectral Sparse Constraint

277



5 CONCLUSIONS 

Aiming at the problem to utilize the spectral sparse 

property in the hyperspectral CS remote sensing 

imaging, this paper presents a new sampling and 

reconstruction method based on the spectral sparse 

representation. By learning the spectral sparse 

dictionary to constrain the spectral region in the 

reconstruction and optimizing the spatial precision 

via total variation constraint, the AVIRIS 

hyperspectral scene is reconstructed in very high 

quality from 25% compressive measurements, which 

provides a new idea to enhance the hyperspectral 

sampling efficiency. Compared with other presented 

hyperspectral CS reconstruction algorithms, the 

reconstruction precision in spatial and spectral region 

of our method has a significant superiority in the same 

experimental condition. 

However, there still exist some problems to be 

further studied in order to better apply the new theory. 

One is the method of the spectral training sample 

construction and dictionary learning. In the 

experiment it is found that if the training samples are 

extracted from the sensor or the type of ground object 

with a great difference from that of the reconstructed 

area, the effect of the spectral sparse representation is 

significantly affected and the reconstruction precision 

decreases. The other one is the realization of spectral 

random coding in hardware, for the spectral sampling 

scheme is more difficult to realize than spatial 

sampling. 
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