
A Combination of V Development Life Cycle and Model-based Testing to
Deal with Software System Evolution Issues

Imane Essebaa and Salima Chantit
Computer Laboratory of Mohammedia (LIM), Faculty of Sciences and Technics Mohammedia,

Hassan II University of Casablanca, Mohammedia, Morocco

Keywords: Model-based Testing, V Development Life Cycle, Model Driven Development, Evolutionary System.

Abstract: Manage Testing is one of the most important and difficult phases in the development process. Indeed, it is
a decisive step before deploying a product which aims to verify and validate whether the developed product
satisfies customer requirements. This step becomes more and more difficult when we face evolutionary system
requirement. Several works and approaches were proposed to deal with this issue but they do not describe any
approach to well manage test phase in evolutionary software system. It is in this context that this paper
proposes a new approach that resolves the problem of managing tests even in a system with evolutionary
requirements. As our works are focused on Modeling Driven Development represented by its variant Model
Driven Architecture, we will focus in this work on automating test generation from well known models as
Model-Based Testing combined with development life cycle to deal with system evolutions. For this first
work, we focus on V life cycle since it specifies different types of test needed to well test a system. In order to
illustrate concepts used in our approach, we will present their application in a RentalCarAgency applications.

1 INTRODUCTION

Automating Development Process is become an im-
portant domain that several software companies are
trying to adopt and apply in the realization of software
product then to test it. Testing a system is considered
as the most important and costly step in the develop-
ment process as it is a decisive phase to validate if
the system satisfies all customer requirements. Thus,
automating this phase becomes essential.

Test step becomes more and more difficult where
the system evolves. Indeed the main difficulty in soft-
ware engineering evolution is that the customer re-
quirements are able to change while software is being
developed, thus dealing with continuous requirements
evolutions and changing system is become the moti-
vation to change the way how to make software prod-
ucts.

In this context several approaches and techniques
have appeared in order to satisfy this motivation and
evolve development process. In this paper we focus
on two new areas that evolves rapidly and that are
recently used by several software companies; Model
Driven Engineering and Incremental Development
process

As the subject of this paper is testing we limit our

work to the corresponding variant of MDE which is
Model-Based Testing. This method proposes to gen-
erate automatically tests from models which allow it
to deal with changes.

At its turn, Incremental Development aims to de-
velop the system incrementally and by interacting
with the customer after the completion of each incre-
ment. In this work we chose V life cycle as one of the
most used increments in the incremental development
process.

We note that both, MBT and Incremental devel-
opment aim to fluently manage frequent requirements
changes; the incremental development focus on a
methodological aspects that defines the process to de-
velop and test the system while MBT is more con-
cerned by an architectural aspect that aims to auto-
matically generate test cases from requirements mod-
els.

This paper is organized as follow, in the second
section we summarize concepts elaborated in this pa-
per. In the third section we present the problematic
that will be discussed and resolved in this paper fol-
lowing by a presentation and a discussion of previous
works made in this context in the fourth section. The
following section (Section 5) describes our proposed
approach that will be illustrated in the sixth section on

528
Essebaa, I. and Chantit, S.
A Combination of V Development Life Cycle and Model-based Testing to Deal with Software System Evolution Issues.
DOI: 10.5220/0006657805280535
In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), pages 528-535
ISBN: 978-989-758-283-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



a case study of RentalCarAgency, and we finish by a
conclusion and some of our future works.

2 OVERVIEW OF CONTEXT

2.1 Evolutionary System

Software evolution refers to the process of develop-
ing a software initially then repeatedly updating its
requirements for various reasons. Indeed, software
systems are bound to adapt or else ”they become pro-
gressively less satisfactory in use” (Lehman and al,
2001)

The evolution of requirements in a software sys-
tem may be omission, addition and/or modification in
the specifications.

Requirements changing issues engender a very
important problem which is managing testing phase.
In this context, several approaches have appeared to
solve this problem among which we highlight the
Model-Based Testing approach

In this paper, we focus on how to manage test-
ing in an evolutionary software system proposing an
approach using Model-Based Testing with V develop-
ment life cycle.

2.2 Model-based Testing

Testing a system is an activity performed to identify
software problems and failures in order to improve the
quality of a program.

The Model-Based Testing (MBT) is a variant of
test techniques that are based on explicit behaviour
models, describing the expected behaviours of the
System Under Test (SUT), or the behaviour of its en-
vironment, built from functional requirements. The
MBT is an evolutionary approach that aims to gener-
ate automatically from models, test cases to apply on
the SUT (Utting and al, 2007).

The figure 1 represents a standard process of
Model-based Testing where the process of designing
models and the process of developing the System Un-
der Test (SUT) evolute in the same time.

2.3 Evolution in Model-based Testing
process

Based on the figure 1 we can define which entities can
evolve when of system Evolution:

• Requirements.

• The test model.

Figure 1: Model-Based Testing process.

• Test cases.

The evolution in these elements engenders modifica-
tions in some entities in MBT process:

• The cover matrix

• The test repository

• Executable scripts

In their paper (Bouquet and al, 2011) Bouquet
and al. admit that each evolution of the requirements
is described informally in the specification then the
test engineer performs this change in the test model,
which is sent to the testing builder. The latter propa-
gates the evolution in the cover matrix and in the gen-
erated tests. The export of these tests modifies the
test repository. Finally, the scripts are updated to al-
low their execution on the SUT. This way the process
can allow testing from models of scalable systems.

2.4 V Life Cycle

In this first work on the testing domain, we will focus
on V development life cycle. We chose V model be-
cause of its flexibility to return to the previous step if
any problem is detected.

In the V model development life cycle, based on
the same information the development and test activ-
ities start. Indeed based on requirements document
developer team start analyzing and working on the
design phase. After completion of this step, devel-
oper team starts the implementation phase and a test-
ing team starts working on test planning, test case,
and test scripting. Activities in V model are working
parallel to each other.

Typical V-model shows Software Development
activities on the Left hand side of the model and the
Right hand side of the model describes actual Testing
phases that can be performed:

• Unit testing

• Integration testing

• System testing

• Acceptance testing

A Combination of V Development Life Cycle and Model-based Testing to Deal with Software System Evolution Issues

529



3 PROBLEMATIC

By analyzing Model-Based Testing process and V de-
velopment life cycle we note that dealing with tests
in system with requirements evolution is a common
challenge that both these domains aim to resolve.
However MBT and V life cycle evolve separately and
their combination should be taken into consideration.
Using V life cycle and MBT in one approach to re-
solve system evolution issue necessitates a response
to the following questions:

• How to manage the evolution of the system using
models in a V process?

• To what extent is it possible to automate testing
process taking into consideration system evolv-
ing?

• Which models should we use to generate test
cases?

4 RELATED WORKS

Being aware of the importance of incremental de-
velopment process and Model-Based Testing, many
works were made on these domains in order to im-
prove development process taking into account man-
aging system changes. However we note that these
domains evolve separately and their combination was
discussed in few works that are presented in the fol-
lowing of this section.

In their paper (Bouquet and al, 2011), the authors
present an implementation tool using Model-Based
Testing that deal with system evolutions. In their
work, they consider different test suites to test SUT
after evolution (Evolution, stagnation, regression and
deletion). For each test suite, they propose a rule to
define it. For the generation of these test suites, they
use TestDesigner which is based on Class Diagram
and State Machine Diagram with OCL constraints.
Using OCL constraints to generate tests does not al-
low to validate all the system , the paper does not de-
scribe how to define a set of test to apply to SUT after
evolution. The the basic idea in this paper is to ensure
the preservation of security properties for long-living
evolving systems using software testing.

Pretschner and al.present in their paper
(Pretschner and al, 2001) the importance to deal
with evolution of systems in testing phases. They
also present their AutoFocus tool which implement
Model-Based Testing and that aim to generate test
cases. The paper describes some evolution develop-
ment process. However, this paper does not propose
any method or approach to how system requirements

should be modeled neither how AutoFocus generate
test cases and from which model. We note also that
this paper does not explain how to deal with evolution
of system using Model-Based Testing.

In the paper (Blackburn and al, 2005), the authors
discuss how organizations use specific model-based
tools and evolved their existing engineering processes
to develop and test applications. The paper highlights
challenges and best practices of Model-Based Testing
and its integration in developments life cycles, how-
ever it does not present which model to use to gener-
ate tests.

In their work (Güldali and al, 2010), Güldali and
al. discuss how Model Based Testing can support Ag-
ile Development without conflicting with the princi-
ples of Agile manifesto. According to their discus-
sion, MBT fits very well with agility, indeed the main
advantage of MBT for the agile world is the usage
of models as primary artifacts and the automation of
several test activities. This paper is an introduction of
other works where they propose an approach to com-
bine MBT with scrum methodology (Löffler and al,
2010).

In their paper (Löffler and al, 2010), authors pro-
pose an approach based on models to improve cus-
tomer specifications and acceptance testing in scrum.
In their approach, authors use UML models likeIn-
teraction Overview Diagram (IOD) and Sequence Di-
agram (SD) to represent user stories specifications.
These diagrams are used by both developers and
testers. Testers enhance them by Test data to gener-
ate automatically test tables, which can be executed
by selenium or fitness tools, this approach is an early
stage and focused only on acceptance testing, there-
fore the paper does not describe how to manage other
testing phases(Unit testing, Integration testing and
System Testing).

For the two last presented works in this section,
we note that the use of scrum methodology does not
allow to test all system in its different phases, but only
the validation step to confirm if the developed system
satisfies all customer requirements.

Most of works that are based on agile methodolo-
gies especially scrum combine it with a development
life cycle in each iteration (Such as V or Y life cy-
cle). In order to well manage all development phases,
in next sections of this paper, we will focus on V life
cycle and we will show how to combine it with Model
Driven Development and Model-Based Testing.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

530



5 PROPOSED APPROACH

In this section we present our approach to combine
Model-Based Testing and Agile Development in or-
der to manage evolution of software system’s require-
ments.

In the first part of this section we describe our ap-
proach how to manage testing in different types of
system evolutions. In the second part we describe the
integration of MBT in V life cycle. In the last part
of this section we present our approach of managing
evolution in the combined approach of V process and
MBT.

5.1 Managing Test in Evolutionary
System

Applications that evolve must be validated before they
are redeployed on the market, especially if they are
critical ones. Managing tests in evolutionary systems
is one of the primordial area studied by researchers.
The validation process in the previous approaches
takes into account the test of the code before require-
ments evolutions.Then the process ensures that the
changes in the code, due to the evolution of the re-
quirements described in specifications, have no im-
pact to the code. This process is called non-regression
tests. Non-regression test can be useful at different
levels of the test: unit, integration, system or accep-
tance.

The purpose of the non-regression test approaches
is to select tests to verify the correct operation of the
unchanged parts in the System Under Test after mod-
ification. However, there is no equivalent to dealing
with validating the deletion of the system features that
have become evident in the evolution process, or of
testing the new features.

In this work, we define three types of system’ evo-
lution; Modification or deletion of existing features
and addition of new features. In our approach we con-
sider that these types may happen in one evolution.

To well explain our approach, we consider a first
system F that contains several features fi : F = { fi}
. To test this system we generate a set of tests T ={t j}
composed from several tests t j to validate the system
requirements at each level of the development pro-
cess.

After an evolution, we get a new system F ′ with
new features: F ′={ f ′i }. To test this system we use at
first non-regression tests to test the unchangeable part
of the system, and at second step we generate another
set of test T ′={t ′j} which is an union of different set
of tests corresponding to each evolution type, so T ′ in
our approach is T ′= (Tnr ∪Tm∪Ta∪Td) where:

• Tnr : Non-regression tests to that validate un-
changeable features in the system.

• Tm: New generated tests of modified features, this
set can be empty if there are no modifications in
features.

• Ta: Tests of new features added to the new system,
if there is no addition to the system Ta is empty.

• Td : Tests of feature deletion from the old system,
to test if features are really deleted from the new
system that can be empty if there are no features
deleted .

5.2 Approach of Integration
Model-based Testing in V Life Cycle
based on Model Driven Architecture

In this section, first we present our approach to model
system requirements using MDA approach integrated
with V life cycle and their combination with MBT,
the second part is to present some rules that we aim
to use in order to automate test generation.

Modeling System Requirements Applying
MDA Approach:

To well manage requirements evolution of the
system, we aim to combine V process and MBT at
first work, our approach consists on:

• Cover Requirements and functional specifications
steps in V life cycle by CIM level of MDA which
is represented in our approach by SBVR and
UCD, we use these diagrams for both generate
”Validation tests” to validate if the developed sys-
tem responds to described requirements.

• Generate the High level design represented in our
approach by PIM level which is generated auto-
matically from CIM level (To generate PIM level
form CIM one we use our approach defined in
our previous works (Essebaa and al, 2017) ), this
step is represented by BCD and SSD of each use
case element, we generate ”Integration tests” from
these diagrams to test the correct functioning be-
tween different elements of the system.

• Generate the low level design represented by PSM
level which is modeled by CD and DSD (The ap-
proach we propose to automate transformations
between PIM and PSM levels that will be dis-
cussed in our future works). We generate ”Unit
tests” from this level to test the generated code.

A Combination of V Development Life Cycle and Model-based Testing to Deal with Software System Evolution Issues

531



Test Generation Rules:

Rule 1: Generate Validation Tests from CIM
Level

In our approach, Validation tests are generated
from different fact types (is property of and associa-
tive) of SBVR standard that details system require-
ments presented in Use Case Diagram. To validate
each system feature, we use business rules that de-
scribe relationship between different fact types of the
system (Possibility, Obligation, Necessity, ...).

Rule 2: Generate Integration Tests from PIM Level
In our approach we tend to generate Integration

tests from PIM level which is represented using Class
Diagram and System Sequence Diagram. In this ap-
proach, we use System Sequence Diagram to extract
the entities that participate to ensure the feature, then
we test if the relationship between these entities re-
sponds to the requirement.

Rule 3: Generate Unit Tests from PSM Level
Unit tests in our approach are generated from PSM

level that we aim to model using Detailed Sequence
Diagram and Detailed Class Diagram. In this level
we will test each operation in class diagram that par-
ticipate to realize a feature, same to previous level the
operation that should be tested is extracted from De-
tailed Sequence Diagram.

The table 1 bellow summarize these rules:

Table 1: Test generation rules.
Rule Model Target

Use Case element Requirement to validate
Fact Type Sub feature to testSBVR&UCD2VT
Business rules of a Fact Type Validation Tests
Actor and data object Life Lines Classes to testBCD&SSD2IT Relationship between classes Integration Tests
Messages Operations to testCD&DSD2UT Operation in classes Unit test

5.3 Managing Evolution in a Combined
Approach of V Process and MBT

In the two previous sections, we discussed how to
manage all types of evolution in our approach and
how we aim to combine V life cycle and MBT.

In this section we will present our approach of
managing tests in evolutionary system inside V life
cycle using MBT. As we have different types of tests
clearly defined in V life cycle, our proposal consists
on:

• Modeling the new CIM level after specifying the
evolution, then generating new ”acceptance tests”
and ”system tests”.

• Generating the new PIM level, then generating
new ”Integration tests”.

• Generating the PSM level, then ”Unit tests” to test
the new generated code.
The definition of the new set of tests is done by

applying the rule previously defined in the first part of
this section, however the approach of how to generate
test cases from models will be defined in our future
works.

The figure bellow describes the presented ap-
proach:

Figure 2: Combination of MDA, MBT and V life cycle.

The combination of MBT and MDA inside a V
life cycle is to fluently manage the evolution of sys-
tem’ requirements, indeed incremental developments
allows to communicate with the customer after each
increment and test developed features.

The V life cycle well illustrate this approach by
separating requirement specifications and their devel-
opment from testing phase which are made in parallel.

6 CASE STUDY

6.1 General Description of
RentalCarAgency System

In order to illustrate the different concepts introduced
in this paper, we present in this section the case study
of RentalCarAgency application proposed in our pre-
vious works (Essebaa and al, 2017).

At first we present initial requirements of the ap-
plication to realize and their modeling applying our
MDA approach, then we present test cases dispatched
to test types in V life cycle.

In the second part of this section, we describe
some evolutions in RentalCarAgency system in order
to apply our approach of generating the new set of
test cases to verify and validate the new system un-
der test. The application have three users profiles that
have different privileges:
• Customer: A person who can view the cars avail-

able in the agency, rates and promotions and may

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

532



subscribe. Once registered, the visitor becomes a
client of the Agency. A client must authenticate in
the system to search for available cars and book a
car by indicating the reservation date and time.

• Manager: A Manager must also authenticate to
view all cars, add, edit or remove cars and view
the bookings made by customers waiting for vali-
dation to decide to accept or decline them.

• Administrator: Once authenticated into the sys-
tem, the administrator has the privilege of modify-
ing and deleting a customer account, as well as the
management of managers account (add, change or
delete).

We can define some management rules as below:
• A customer can rent several cars.

• A car can be rented by 0 or several customers.

• A manager can manage 1 or more cars.

• A car is managed by 1 or more managers.

• An administrator can manage 1 or several cus-
tomer accounts.

• An administrator can manage 1 or more account
managers.
The first step in our approach is to model the

system requirements following our approach as de-
scribed in the previous section of this paper:
• Modeling CIM Level and Generating Valida-

tion Tests: In this step we model the system re-
quirements using SBVR (Semantic Business Vo-
cabulary and Business Rules) and UCD (Use Case
Diagram) to represent the CIM level, from where
we tend to generate Validation tests.
From this level we will generate validation tests.

The table 2 bellow describes the application of vali-
dation test generation rule on RentalCarAgency sys-
tem (we will focus in this part on Use Cases elements
specified for ”Customer” actor).

• Modeling PIM Level and Generating Integra-
tion Tests: The second step consists on gener-
ating PIM level represented by BCD (Business
Class Diagram) and SSD (System Sequence Dia-
gram) and then generating Integration Tests from
PIM level, the table 3 describes the application of
this rule on RentalCarAgency system.
The generation of PIM level was automated using
an eclipse plugin that we developed and presented
in our previous works (Essebaa and al, 2017)

• Modeling PSM Level and Generating Unit
Tests: The last step consists on generating PSM
level that we aim to model it by CD (Class Di-
agram) and DSD (Detailed Sequence Diagram)

ansd then generating Unit Tests from PSM level,
the table 4 describes the application of this rule on
Rental Car Agency system.
The generation of PSM level will be discussed and
detailed in our future works

• Evolution of Rental Car agency system
In this section we will make some evolu-
tions to the system (addition, deletion and
modification of features) in order to visualize
generation tests attitude in evolutionary system.

– Modifications: ”View car catalog” feature will
be available for all users not only customers,
this modification engender a new actor ”User”
that it will be a generalization of ”Customer”
actor.
The modification of this feature will necessi-
tate to make some modification to test cases.
Indeed as in our method we use MBT approach
we tend to generate automatically the new set
of tests according to the new models after mod-
ification, we call these tests Tm for ”Tests of
modification” At this stage of work we propose
a manual definition of the tests affected because
of the change, the table 5 describes these tests

– Addition: In the new system, ”Customer”
will be able to validate its rental by pay-
ment, ”payment” feature will generate new
test cases that we will call Ta for ”Tests
of addition”. The addition of a feature
may engender some modifications in old
ones, in table 5 we define new tests added
to test payment feature and describes if
other tests was affected due to addition.

– Deletion: The addition of ”payment” feature
requires to delete ”manage rental” feature of
”Manager” that allowed him to accept or reject
the rental, in the new system the customer can
validate its rental from the system, before pro-
ceeding to payment option the system must be
able to check if the chosen car is available for
date specified by the customer. We note that
deleting feature may also add or modify tests,
otherwise tests corresponding to deleted feature
that we represent Td , the table 5 describes these
tests.

Definition of Set of Tests of the New System Under
Test After Evolution: After defining evolution and
generating new tests for each evolution, we have to
define the new set of tests that we will apply on the

A Combination of V Development Life Cycle and Model-based Testing to Deal with Software System Evolution Issues

533



Table 2: Generation of Validation tests form CIM level.

Source Target
UseCase
Element Fact Type Business

Rule Requirement Sub feature Test cases

Customer
requests
car catalog

It is possible that
customer requests
car catalog if
customer
is authenticated

request
car catalog

Authenticated customer
must have the
possibility to
request car catalog

Customer
receives
car catalog

It is possible that
customer receives
car catalog
if customer
is authenticated

receives
car catalog

The system must
sends a car catalog
if it was requested
by a customer

View
car catalog Customer views

cat catalog

It is possible that
customer views
car catalog
if customer
is authenticated

The system must
allow authenticated
customer to view
car catalog

view
car catalog

The customer
must be able
to view recieved car catalog

customer books
car

It is possible that
customer books
car if customer
is authenticated

books car

Authenticated
customer must
be able to
books car

books car system creates
rental data object

It is obligatory
that system generates
rental if customer
books car

The system must
allow authenticated
customer to books car

generates rental
data object

The system must
generates the
rental data object for
the booked car

system requests
user credential

It is obligatory that
the system requests
user credential
if customer
logs into system

requests
user credentail

The system must
request user credential
if a customer
try to logs into
the system

customer sends
user credentials

It is necessary
that customer sends
user credentials
if system requests
user credential

sends
use credentials

The system must
allow customer
to send user credential

customer sends
user credentials

It is necessary
that customer sends
user credentials
if system requests
user credential

sends
use credentials

The system must
allow customer
to send user credential

System verifies
user credentials

It is obligatory that
the system verifies
user credentials if
customer sends
user credential

verifies
user credential

The system must
be able to
check user credential

logs into

System accepts
user credentials

It is possible that
system accepts
user credential

The system must
allow customer
to log into the system accepts

user credential

The system must
be able to
accept user credential

Table 3: Integration tests generation from PIM level.
Source Target
Requirements SD connection Classes Integration tests

Customer Customer books at
least 1 car

Car Car belongs to 1 rentalBooks car

The operation requires
connection between
”Customer”, ”Rental”
and ”Car” Rental Rental contains at least

1 car
Customer Customer owns 1 accountLogs into The operation requires

connection between
”Customer” and ”Account” Account

Account belongs to
1customer

new SUT, in our approach to define this set we have
to apply the rule previously defined! T ′= (Tnr ∪Tm ∪

Table 4: Unit tests generation from PSM level.
Source Target
Requirements Messages of SD Operations to test Unit tests

System requests User Credential requests(user credential) Test ”requests” operation

Customer sends User credential sends(user credential) Tests if user credential are
not empty

System verifies User credential verifies(user credential) Test if user credential
are correct

System accepts user credential accepts(user credential) accepts if user credential
are correctLogs into

System rejects user credential rejects(user credential) rejects if user credential
are not correct

Ta ∪Td),where Tnr: all test cases that did not evolute
with the evolution of the system.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

534



Table 5: Evolution of tests.
Type Requirements Tests Evolution

VT Every user must
be able to view car catalog

IT Coordination between
”User” and ”Catalog”T m View car catalog

UT Test view(catalog) method
Change

Customer must be able to
pay its reservation

VT The system must verify
Credit card and code

IT
Coordination between
”Customer”, ”Rental”,
”Car” and ”Payment”T a Payment

UT Test pay(rental, customer)
method

Addition

VT Manager accepted rental
Manager rejected rental

IT Coordination between
”Manager”, ”Car”, ”Rental”T d Manage rental

UT Test manage(rental, manager)
Deletion

VT

The system must be able to
verify automaticaly the
availibility of car in the
chosen dates

IT coordination between ”Car”
and ”Rental”T-a Validate date

UT Test validate(date, car) method
Addition

7 CONCLUSION

The primary objectives of this paper is to present
our approach of combining two important variants of
Model Driven Engineering; MDA and MBT, and V
life cycle to manage testing in an evolutionary soft-
ware system.

Indeed in this first work we chose to combine
these process to deal with system changing issues,
we define in this paper three types of software sys-
tem evolution; modification or suppression of existing
features, and addition of new features.

In this paper we also present a rule that allows
to define a set of tests after evolutions, this rule is
a unions of different sub-test corresponding to each
type of features previously defined and old tests of
unchanging part of the old system.

We mention that this paper in an introduction of
our future works where we aim to improve the idea
of testing in evolutionary system using Model-Based
Testing.

8 PERSPECTIVES

In our future works we plan to :

• Integrate MDA and MBT in the most widely used
development methodologies even agile ones.

• Create an eclipse plugin (In the continuity of our
previous works)(Essebaa and al, 2017), that auto-
matically generate tests form models.

• Apply our approach on more consistent projects
in order to evaluate our approaches and test tools.

REFERENCES

Blackburn and al (2005). Life cycle integration of model-
based testing tools.

Bouquet and al (2011). A model-based testing approach for
evolution.

Essebaa and al (2017). Tool support to automate transfor-
mations between cim and pim levels. In Proceedings
of the 12th International Conference on Evaluation of
Novel Approaches to Software Engineering - Volume
1: MDI4SE,, pages 367–378. INSTICC, SciTePress.

Güldali and al (2010). Agility vs. model-based testing: A
fair play? In Bode, S. e. a., editor, Proceedings of the
IWK2010 Workshops: The First International Work-
shop on Evolution Support for Model-Based Develop-
ment and Testing (EMDT2010), volume 646 of CEUR
Workshop Proceedings, pages 55–58. (invited paper).

Lehman and al (2001). Rules and tools for software evo-
lution planning and management. Annals of Software
Engineering, 11(1):15–44.

Löffler and al (2010). Towards model-based acceptance
testing for scrum. Softwaretechnik-Trends, 30(3).

Pretschner and al (2001). Model based testing in evolution-
ary software development.

Utting and al (2007). Practical Model-Based Testing: A
Tools Approach. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA.

A Combination of V Development Life Cycle and Model-based Testing to Deal with Software System Evolution Issues

535


