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Abstract: Any meta-modeling discipline, similar to programming languages, will, sooner or later, feel the need for some 

operational language in order to express constraints for model validation and/or action semantics for 

executable modeling. Multi-level meta-modeling is no exception in this regard. However, it does provide the 

facility to formalize the operation language within the meta-modeling framework, thus the language syntax 

and semantics fits perfectly well the intended need of the modeling environment. Moreover, if the modeling 

framework is flexible enough in the principles, the model validation can be specified and also applied to the 

operation language as well. In this paper, we shortly introduce such a modeling formalism, DMLA, and then 

describe in relative detail the design and the current realization of its operation language, DMLAScript, which 

enables the multi-level meta-modeling framework to effectively tackle realistic domain models. 

1 INTRODUCTION 

Multi-level meta-modeling is enjoying a renaissance 

after more than ten years of simmering. The paradigm 

has been rediscovered in recent years due to various 

factors: i) multi-level meta-modeling techniques for 

describing data models have been evolving a lot since 

the first introduction of potency notion, ii) research 

quality tool support is widely available from 

universities and research institutes, iii) mainstream 

meta-modeling is facing increasingly challenging 

problems as industry has started adopting research 

solutions and tried to use them in real problem 

settings. Indeed, contemporary meta-modeling is a 

mature technology, that is, there exist no known 

theoretical limits of its applicability to whatever 

shape the particular application domains might come 

up with and whatever complexity they present. The 

only real practical headache nowadays is connected 

to the forecasting of the adaptation and later 

maintenance costs the candidate solutions will 

require. In effect, it is only due to the additional cost 

of accidental complexity, which derives from the 

selection of a particular modeling technology, 

provided the details and the scope of the problem 

have been thoroughly investigated. Obviously, multi-

level meta-modeling is not a silver bullet either; 

nevertheless, this paradigm aims to minimize that 

accidental complexity by taking advantage of an 

unlimited number of meta-levels in order to properly 

allocate the right abstraction detail to each of them. 

The rest is modeling as usual: instantiation plays 

exactly the same role as in the case of state-of-the-art 

modeling methods such as UML or EMF Ecore. 

However, there is though a significant difference: the 

leveling is not prescribed by a methodology, but it is 

only encouraged and directly influenced by the aimed 

solution(s) of the domain. 

Although multi-level meta-modeling is a very 

promising technique, it does have its own problems 

and limitations. Currently, the most serious of those 

issues are: 1) the general lack of customizable syntax 

and precise semantics of operations acting on multi-

level models, 2) a self-contained and self-describing 

multi-level meta-modeling framework that can 

bootstrap without explicitly referring to any other 

legacy modeling techniques, and 3) a semantically 

correct validation framework for multi-level models 

that is formally anchored in precise definition of the 

underlying instantiation process. Our approach, 

Dynamic Multi-Layer Algebra (DMLA), aims to 

address these problem areas by a formal algebraic 

foundation based on a novel precise conceptualiza-

tion of the instantiation process and a related flexible 

tuple representation of multi-level model entities, all 

within a totally self-contained bootstrapping 

mechanism. A particularly important bootstrap of the 

methodology is the self-describing validation 
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framework that also incorporates a full-fledged 

operation language, which is entirely specified by 

AST entities in DMLA. The language grammar is 

used for formalizing the validation rules of the 

bootstrap, including also those of such rules that are 

to be applied to the AST entities per se. Without self-

circularity, this revolutionary validation approach 

works flawlessly and facilitates a programming like 

creation of multi-level models. Having the details  of 

the validation framework already published in 

(Urbán, et al., 2017b), this paper concentrates only on 

the details of the operation part of the bootstrap, by 

describing the main design ideas of syntax and 

semantics for the operation language and its direct 

application within DMLA’s flexible auto-validation 

mechanism. 

2 RELATED WORK 

Meta-modeling usually focuses on the systematic 

modeling of data of a particular application domain. 

Although the modeling approaches are fully aware of 

the need of operations within the data structure, MOF 

and EMF Ecore standard modeling solutions only 

allow signature modeling in EClass. Various research 

techniques intended to rectify this situation, the most 

notable of them being Kermeta (Muller, et al., 2005) 

(KerMeta, 2017) and recently the GEMOC 

(Combemale, et al., 2013a) (Combemale, et al., 

2013b) framework. Although their solution looks 

promising, there are still some limitations remaining: 

for example in the case of Kermeta, there is a need for 

a complex model promotion due to restricted numbers 

of ECore’s meta-modeling levels. In the case of the 

GEMOC approach the beauty is fading by the 

Xtend/Java semantics woven into the Ecore meta-

models in order to turn them executable. 

Multi-level meta-modeling promises to simplify 

many of the issues that originate from accidental 

complexity. For example, its usage becomes very 

instructive when solving the discordance between the 

4-level nature of eMOF and Kermeta’s quest for a 

language meta-model in Ecore. The effective 

handling of accidental complexity relies on the 

explicit differentiation between linguistic and 

ontological meta-models (Lara, et al., 2014) (Gutheil, 

et al., 2008) and the facility of deep or strict 

instantiation (Atkinson & Kühne, 2001). For 

example, potency notion (Atkinson & Kühne, 2001) 

assigns a potency value to every class and attribute, 

which clearly indicates the remaining levels they can 

get through before getting fully instantiated. Melanee 

(Atkinson & Gerbig, 2012) has further refined 

potency notion by distinguishing the concepts of 

durability and mutability. However, in essence, the 

basic ideas of  Orthogonal Classification Architecture 

(OCA) (Atkinson, et al., 2009) remains in place, thus, 

it is taken for granted that all meta-model 

management facilities are fully and non-restrictively 

operational on each meta-level. Hence, the 

instantiation step is heavily simplified; it is controlled 

by simple integer values and no sophisticated 

constraint handling can be carried out. 

More versatile multi-level meta-modeling approaches 

are metaDepth (Lara & Guerra, 2010) and XModeler 

(Clark, et al., 2015). Both include an operational 

language to extend multi-level modeling with 

operations. metaDepth uses EOL, a language of the 

Epsilon family, for constraint and action 

specification. Although it nicely complements 

metaDepth, it also showcases the same problem 

already mentioned in the case of GEMOC regarding 

its reliance to an external language. XModeler has a 

much more advanced solution for operation 

integration: XMF’s meta-model facilitates higher-

order functions in order to process syntax and to 

provide a basic executable language (XOCL), which 

relies on OCL syntax and extends it semantics. 

However, XOCL is fixed in its syntax and semantics; 

thus, it is not easy to be extended by new features. 

Also, being part of the XMF (Clark, et al., 2015) 

modeling framework, every domain model must 

express its semantics in XOCL. On the contrary, in 

the approach presented in this paper, the operation 

language mainly serves as a facilitator to efficiently 

generate meta-model elements. As a result of this 

design, the operations are defined and constrained 

only by the entities found in the bootstrap of the 

particular application domains. 

3 THE DMLA APPROACH 

Dynamic Multi-Layer Algebra (DMLA) is a multi-

level modeling framework that consists of two major 

parts: (i) the Core, a formal definition of the modeling 

structure and its management functions; (ii) the 

Boostrap, an initial set of pre-defined modeling 

entities. In DMLA, the model is represented as a 

Labeled Directed Graph, where all model elements 

have four labels: a unique ID of the element, a 

reference to its meta, a list of concrete values, and a 

list of contained attributes. Besides the 4-tuples 

representing the model entities, there exist also 

functions to manipulate the model graph, for example 

to create new model entities. These definitions 

(Urbán, et al., 2017a) form the Core of DMLA, which 
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is specified over an Abstract State Machine (ASM) 

(Boerger & Stark, 2003). Thus, in DMLA, the states 

of the state machine are snapshots of the dynamically 

evolving models, while transitions (e.g. deleting a 

node) represent modification actions between those 

states.  

The Bootstrap is an initial set of modeling 

constructs and built-in model elements (e.g. built-in 

primitive types) which are needed to adapt DMLA’s 

abstract modeling structure to practical applications. 

The main idea behind separating the Core and the 

Bootstrap is to improve flexibility, but also to keep 

the approach formal. This way, the Bootstrap is 

becomes  swappable, thus even the semantics of valid 

instantiation can be re-defined. Namely, each 

particular bootstrap seeds the meta-modeling 

facilities of the generic DMLA formalism.  

Validation in DMLA is simple in theory: 

whenever a model entity claims another entity to be 

its meta, the framework automatically validates if 

there is indeed a valid instantiation between the two. 

The validation formulae can be modularized by 

introducing them directly into the Bootstrap. Since 

these formulae directly influence the actual semantics 

of instantiation, every model validation gets 

modularized and DMLA’s instantiation becomes 

effectively self-defined by the model per se. 

However, in practice, the key success factor to 

achieve this self-validated, self-describing behavior 

relied on the consistent introduction of operations. In 

DMLA, operations are modeled internally within the 

bootstrap by a self-contained operation language. 

3.1 The Bootstrap 

The ASM functions define the basic structure of the 

algebra and they also allow to query and change the 

model. However, relying only on these pure 
 

mathematical constructs, it would be rather hard to 

use the algebra in any practical modeling scenarios. 

Hence, the concept of the Bootstrap was introduced, 

which is a flexible and swappable layer for defining 

any needed modeling entities. For example, the 

modeling entities of the current bootstrap (Figure 1) 

can be categorized into four groups: (i) basic types 

(blue boxes) providing a basic structure for multi-

level meta-modeling, (ii) built-in types (purple boxes) 

representing the primitive types available in DMLA, 

(iii) entities facilitating the introduction of operations 

into DMLA (green boxes), and (iv) validation related 

entities (red boxes).  

Basic entities are the enablers of multi-level meta-

modeling in DMLA. They create the root of the meta 

hierarchy all other modelled entities rely on. The 

exact definitions are available at (DMLA Website, 

2017). The Base entity is at the very top of the 

hierarchy, thus all other entities are instantiated from 

it (directly or indirectly). Base defines that entities 

can have slots (defined by SlotDefs) and 

ConstraintContainers. Slots represent substitutable 

properties, which are syntactically similar to class 

members in OO languages. ConstraintContainers 

(and the contained Constraints) are used to customize 

the instantiation validation formulae. Moreover, Base 

has two other slots, reserved for validation of those 

formulae, which enforce the basic mechanisms of 

instantiation validation for multi-level modeling as 

explained later. The SlotDef entity is a direct 

instantiation of Base. It is used to define slots. Slots 

can contain ConstraintContainers, which grants them 

the capability to attach constraints to the containment 

relations defined by the slot. Moreover, SlotDef 

overrides the validation slots inherited from Base. 

The Entity entity is another direct instance of Base. 

Entity is used as the common meta of all primitive and 

user-defined types. Entity has two instances: 
 

 
Figure 1: The elements of the Bootstrap. 
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Primitive (for primitive types) and ComplexEntity 

(for custom types). All domain relevant entities 

further instantiate ComplexEntity.  

The built-in types represent the universes of ASM 

in the Bootstrap: Bool, Number and String. All these 

types refer to sets of values in the corresponding 

universes. For example, the entity Bool has been 

created so that it could be used to represent Boolean 

type values within the model. Built-in types are relied 

on when a slot is filled with a concrete value and that 

value is not a reference to another model entity, but it 

is a primitive, atomic value. All built-in types are 

instances of Primitive. 

Operations are the primary focus of this paper. All 

these entities, representing the grammar of the 

operation language, are defined in the AST subpart of 

the bootstrap below ComplexEntity. Moreover, there 

are also some extra-grammar entities here, which deal 

with ASM execution semantics of the operations by 

specifying for example the invocation mechanism 

and the handling of return values and variables. More 

details are described in Section 4. 

In DMLA, the validation logic relies on the 

selection of two type specific formulae (referred to as 

alpha and beta) based on the meta-hierarchy of the 

element to be validated. The alpha type formulae is 

constructed to validate an entity against one of its 

instances, by checking whether the instantiation 

relation between the two elements can be verified. In 

contrast, the beta type formulae are in-context checks: 

they are mainly needed in case an entity has to be 

validated against multiple related entities, e.g. in case 

of cardinality. The Base entity contains the default 

alpha and beta formulae, which can be customized by 

the instances, provided that they do not contradict the 

standard validation rules imposed by the Base. The 

validation aspect of the Bootstrap has been discussed 

in detail in (Urbán, et al., 2017b). 

4 OPERATIONS 

For any practical modeling technique, having a 

consistent and powerful operation language is more 

than a desired feature. Such a feature enables models 

to be truly self-contained by incorporating the 

semantics and the dynamic nature of the models as 

their integral part, instead of relying on an externally 

provided substitute. However, in most current 

modeling approaches, this is achieved by importing 

an external language into the modeling universe, thus 

they deal with black box semantics. While it is an 

improvement compared to inflexible static solutions, 

it still may not be enough: (i) since the language is an 

external asset, so the self-describing nature of the 

technique is violated; (ii) the main concepts of the 

technique - such as instantiation or validation – are 

not available in the imported language in a genuine 

way, or they may even have a different interpretation 

unbeknownst to the modeler. 

While the desire to include an operation language 

within a modeling technique is well understood, 

another important aspect is if and how such languages 

can be integrated. In this section, we present our 

process of how intrinsically modeling a full-fledged 

operation language and augmenting the original 

DMLA framework with it, all within the frame of the 

original DMLA concept domain. 

As a result, our approach has clearly separated the 

various concerns and issues of such a language, and 

tackled them head-on one by one: (1) Evaluated the 

different possibilities of modeling the AST (NB: 

DMLA’s bootstrap enables such design by itself), (2) 

Chose the abstraction level of the language, (3) 

Created the specification and the model entities of the 

AST, (4) Evaluated the need of a DSL, (5) Integrated 

the language into the framework, (6) Analysed the 

execution methods of the modeled code. 

4.1 Modeling an AST 

Since most modeling frameworks claim to have a 

universal foundation to describe models – and this is 

even more prevalent in multi-level modeling – 

technically the issue is not be a problem at all. 

Essentially, code is only data at another meta-level, 

that is, instances of an AST meta-model. Since the 

static aspects of DMLA and the selected bootstrap are 

well formed (Urbán, et al., 2017a), it is relatively 

simple to create model elements for a programming 

language as nodes of an AST. 

4.2 Abstraction Level 

It is an important challenge to choose the abstraction 

level of the language adequately. In DMLA, 

accessing and manipulating entities of the model can 

be achieved at two levels: (i) at the level of the tuples, 

or (ii) at the level of the bootstrap. 

Since everything in DMLA is a tuple, a language 

can be easily created that operates on the tuples of the 

model. It also means that the type system and other 

semantic concepts introduced in the bootstrap cannot 

become part of the language. Hence, this solution 

results in a low-level, though universal solution, 

which is independent of the bootstrap and not 

automatically reflected in the semantics of the 

language. 
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Another solution is to operate on the bootstrap 

level. This means that the type system and all 

concepts of the bootstrap are tightly integrated into 

the language itself, for example, one could use the 

constraints of the bootstrap for declaring variables.. 

This solution results in a high-level, yet rather 

complex language.  

We have selected the first option. It may look less 

elegant, but it results in an efficient low-level 

language, operating directly over the tuples of the 

underlying DMLA mechanism. Also, for reasons of 

practicality, we chose an imperative approach. 

4.3 Modeling the AST 

We collected some requirements to be imposed: (i) 

the language shall be bootstrap-agnostic, thus the type 

system shall mirror the ASM prescribed one, i.e. 

primitives, IDs and Any. Multi-dimensional arrays of 

types shall be allowed as well. (ii) The built-in 

functions of the ASM are to be made available to 

enable operations with tuples. (iii) Usual 

programming language constructs, i.e. conditionals, 

loops and functions must to be supported. 

In order to satisfy the above requirements, we 

implemented the following language constructs: (i) 

types: Any, ID, string, number and bool (and their 

multi-dimensional arrays); (ii) variables; (iii) 

sequences (block); (iv) conditionals (if); (v) loops 

(while, for, foreach); (vi) type check and cast (is, as); 

(vii) arithmetical and logical operators (+ - * / || &&); 

(viii) index operator; (ix) functions and function calls 

– preferably with the concept of “this”, a dedicated 

parameter; (x) return. 

With this list of constructs established, modeling 

of the AST could be properly carried out. The 

constructs are defined as bootstrap entities. For 

example, the If construct is defined as follows: (i) the 

construct is the instance of Statement, (ii) it has a 

Condition slot with Expression type and [1..1] 

cardinality, (iii) it has a Then slot with Statement type 

and [1..1] cardinality, (iv) it has an Else slot with a 

Statement type and [0..1] cardinality. 

All constructs could be modeled in similar ways 

in the bootstrap. In the end, we implemented an 

operation language that now exists as a static 

specification within the model. Using this language, 

programs can be created to indirectly manipulate 

tuple representations, and any code written in this 

language will be stored in the bootstrap. 

 

 

 

4.4 DSL for Operations 

4.4.1 Evaluating the Need for a DSL 

At this point, model representation of “code” is 

provided in the Bootstrap. Integration of the language 

into the framework (e.g. migrating the validation 

logic of the Bootstrap) has no obstacles in its way. But 

the task looks difficult, to say the least. 

It is important to emphasize that the AST 

representation of code is effusive. Comparing the 

textual representation of code snippets of any 

programming language to its equivalent AST 

representation shows clear gap in terseness. 

Let us take the below code example that results in 

9 tightly connected tuples when written in the 

operation language of DMLA as follows:  

 
if(true) return 1;  

 

This factor of flatulence indicates that writing real 

“code” would be nearly impossible for any modeller. 

Constructing nodes of an AST is a very cumbersome 

low-level method of “coding”: in a sense, when 4-

tuples are being produced in DMLA, it would look 

like programming in an assembly language or even 

directly producing byte-code. This is why the 

question of creating a DSL is relevant in this context: 

it helps turn any theoretical solutions to practical 

implementation. Since our goal was not only to define 

the language, but we also wanted to tightly integrate 

it into the already existing modelling framework. To 

achieve this goal, we had to produce real code, thus 

we decided to create a DSL for the abstract language 

syntax: DMLAScript was born. 

DMLAScript had to be a practically applicable 

operation language over DMLA. Therefore, it must 

be able to effective produce 4-tuple entities. Thus, the 

most important aspect of DMLAScript’s language 

design is maximal efficiency of tuple production. 

However, there are other design constraints imposed 

on it so that DMLAScript could become genuinely 

part of the DMLA framework: 1) the structure of 

entities shall be expressed as “data definitions”, 2) 

operational logic shall be programmed as “code”, and 

finally 3) validation logic of the bootstrap must be 

given by the DSL. 

In order to better appreciate the task of an optimal 

operation language design, it is important to re-

emphasize that DMLAScript is not a necessity out of 

DMLA per se, nonetheless without it we cannot 

imagine that any practical modelling scenarios can be 

tackled adeptly. Hence, DMLAScript is effectively a 
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facilitator of efficient entity modelling, which creates 

the illusion of a programming language over DMLA. 

With DMLAScript, we simply provided a textual 

DSL over the constructs of the operation language 

already defined in the Bootstrap. We borrowed most 

of the syntax ideas from Java. We implemented the 

DSL and its mapping onto Bootstrap entities (tuples) 

within Xtext. With DMLAScript, the previous “code” 

example is as simple as it was written there.  

This style of coding looks much more natural and 

it is easier to use for the modeler than to create the 

corresponding tuples manually and hook them 

together along their IDs. Since the syntax of 

DMLAScript follows modern imperative languages, 

it is both easy to use for programming and to get 

parsed for execution. Our current DSL tool relies on 

transforming the above code snippet into instances of 

AST nodes, in the end producing the 9 tuples. 

4.4.2 Syntax of DMLAScript 

Before proceeding to any further in the process of 

language design, we will show a few simple code 

examples to introduce the syntax of DMLAScript. 

Entity1 : Entity2 { 

  slot E1Slot : Entity2.E2Slot = 1; 

  AnotherSlot; 

} 

In the first example, we declare an entity with the 

ID Entity1. The meta of Entity1 is Entity2. Between 

the braces, we have the attributes of Entity1, namely, 

there is a slot with the ID E1Slot. E1Slot is defined 

inline, nested in Entity1. The meta of E1Slot is 

Entity2.E2Slot. The constant value 1 is assigned to the 

value of E1Slot. Entity1 also has a second slot with 

the ID AnotherSlot. AnotherSlot is not defined inline: 

it must already be defined somewhere else in the 

code, and it is only referenced here to be included as 

attribute of Entity1. 

It is important to keep in mind that in 

DMLAScript, the indexing feature of Xtext is heavily 

used. Entities in the code have fully qualified names 

using their parent packages and entities. It means that 

the produced ID of the tuple generated from the 

definition of E1Slot will look like “Entity1.E1Slot”. 

This is important to keep in mind because there are a 

lot of apparently colliding IDs in the code of the 

Bootstrap (DMLA Website, 2017), while in reality 

IDs are affected by the index and the imports, and will 

be fully unfolded in the tuple generation step. 
 

Entity1 : Entity2 { 

  @ConstrContainer1 

  @ConstrContainer2: MContainer1 = 

    $SomeConstraint1; 

  @ConstrContainer3: MContainer2 = 

    SomeConstraint2: MConstraint { 

      slot ConstraintSlot: 

        MConstraint.Slot = true; 

    }; 

  slot SomeSlot: Entity2.E2Slot = 

    $SomeEntity; 

} 

In the second example, not only an entity is 

declared with slots, but there are also constraint 

containers defined on the slot. Entity1 is the instance 

of Entity2, and has a single slot, SomeSlot. SomeSlot 

is the instance of Entity2.E2Slot, and its value is a 

reference to the entity SomeEntity. SomeSlot has three 

attributes, all of them indicated above the slot: 

ConstrContainer1, ConstrContainer2 and 

ConstrContainer3. ConstrContainer1 is an already 

defined entity. ConstrContainer2 is an entity, which 

is defined inline, its meta is MContainer1, and its 

value is set to the entity SomeConstraint1. 

ConstrContainer3 is also defined inline, its meta is 

MContainer2, and its value is set to a constraint entity 

defined inline. This constraint entity is called 

SomeConstraint2, its meta is MConstraint. It has one 

attribute, namely the slot ConstraintSlot, which is the 

instance of MConstraint.Slot, and its value is set to 

true. 

This example shows how the basic entities of the 

bootstrap are used in the language. Most entities 

defined in the DSL are instances of ComplexEntity; 

they contain SlotDef instances as attributes; SlotDef 

instances have values; and SlotDef instances contain 

ConstraintContainer instances as attributes; finally, 

ConstraintContainer instances contain Constraint 

instances as values. 
 

operation void Method1(); 

operation Bool Method2(Number p1); 

operation String ID::Method3(Bool[] p1); 
In the third example, we have three operation 

signatures. The operation Method1 has a void return 

type, and no parameters. Method2 has a Bool return 

type (this refers to the primitive entity Bool) and one 

parameter called p1 with the type Number (primitive). 

Method3 has a String return type (primitive), has a 

context with the type ID – which will be the type of 

“this” inside the operation - and also has a single 

parameter called p1 with the type of one dimensional 

Bool array. 
 

operation String Example(Number p1){ 

  if(p1 < 0) return "negative"; 

  while(p1 > 0) --p1; 

  call $SomeMethod(); 

  return "something"; 

} 
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In the fourth example, we define an operation 

with its body. The operation has the ID Example, has 

a String return type, and has a single Number 

parameter called p1. If p1 is less than 0, the operation 

returns the string “negative”, otherwise, it decrements 

p1 to 0 in a while loop. After that, it invokes another 

method with the ID SomeMethod, and then returns the 

string “something”. Note that modifying operation 

parameters (such as decrementing p1) has no effect 

on the caller site, since parameters are all passed by 

value in DMLA. 

 
operation void OpToContain() { } 

EntityWithOperation : MetaEntity { 

  slot MethodSlot : MetaEntity.Slot = 

    $OpToContain; 

} 
In the final, fifth example, we define an operation 

with the ID OpToContain. Then, we define an entity 

called EntityWithOperation. This entity has a single 

slot called MethodSlot, which has its value set to 

OpToContain. As it can be seen, it is very 

straightforward to reference operations. 

4.4.3 Design of DMLAScript 

Let us describe now the generic design ideas behind 

DMLAScript in order to show how the language has 

coped with the original requirements. 

Firstly, DMLAScript rebalances the very pointer 

like nature of the 4-tuple representation of related 

DMLA entities. Namely, instead of manually dealing 

with all the IDs, which weave the model entities 

together along the meta, the attribute, and even the 

value references, the model designer can simply rely 

on a local context around the entities when he carries 

out his modeling task. Also, when describing the 

structure of the entities, DMLAScript applies 

annotation-like constructs to attribute slots in order to 

simplify the specification of the constraints defined 

on the slots. These two features create the feeling of 

a high level entity definition language that enables 

efficient production of the corresponding 4-tuples.  

Secondly, DMLAScript follows the imperative 

semantics of Java-like notations. We introduced a 

special syntax for direct referencing of entities, which 

enables us to connect seamlessly the entity definition 

part to the operational part of DMLAScript. Taken 

into account that operations are also represented as 

entities in DMLA, entity referencing works both 

ways: from entity definition to operation logic and 

back. Hence, the modeller should not be aware of 

those two aspects, DMLAScript looks like an integral 

language for multi-level meta-modeling, which also 

happens to be used to define itself in the bootstrap. 

Thirdly, DMLAScript also provides a language to 

express DMLA’s validation logic for multi-level 

meta-modelling. It is established by a pre-set naviga-

tion scheme of validation logic invocations that is 

seamlessly embedded into the basic entities of the 

bootstrap, via their alpha and beta slots. In effect, the 

bootstrap has been set up by DMLAScript in such a 

way that it can carry out its own validity check. The 

default validation behaviours can be constrained via 

instantiation, for example, cardinality logic and/or 

type validation logic can be added to entities via alpha 

and beta operations written in DMLAScript.  

4.5 Integration of the Language 

With the syntax and general design and its embedding 

being detailed, it is obvious that any operation logic 

can be produced and efficiently stored as tuples in 

DMLA models. All that thanks to DMLAScript and 

its parsing module. The next goal was to express the 

already existing (validation) semantics and dynamic 

logic with DMLAScript. 

Our aim was to migrate the validation logic, 

which had been previously residing at the level of the 

Core and the ASM formalism. Moreover, we 

recognized that the new operation language would 

enable not only the migration of the validation 

formulae, but also the full modularization of the 

underlying evaluation logic. Since operations are 

handled as data in DMLA, data structures can also 

contain references to operations as the design 

required it. This feature allowed us to create truly 

self-contained entities in the bootstrap, which are not 

only containing their structure and data, but they can 

also prescribe their own custom validation logic at 

ease (Urbán, et al., 2017b). 

4.6 Execution of DMLAScript 

With DMLAScript genuinely integrated into 

DMLA’s modeling fabric, the only open issue to be 

solved was how to tackle the dynamics of the 

language, that is, how to execute, for example, the 

validation logic represented in 4-tuples. Essentially, 

there are three ways to answer this challenge: (i) rely 

on an interpreter, (ii) generate executable code in 

another language, or (iii) generate a directly 

executable binary. The third option results in a rigid, 

platform dependent solution that is more complex 

than the first two, thus we dropped this idea. While 

running the language within an interpreter is a rather 

flexible solution, it though requires a well-established 

infrastructure, such as some kind of a virtual machine. 

On the contrary, generated executable code is again 
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quite a rigid solution, but, at least, it does not require 

complex a runtime framework. 

Since the current technical solution is our first 

implementation drop, mostly we aimed to validate 

our assumptions in practice; hence we decided to 

provide a quick prototypical execution framework, by 

generating Java code from the AST instances stored 

in the DMLA models.  

The framework itself has been programmed in 

Java and it consists of a model repository, which 

contains the tuples of the model and a symbol table 

for built-in and custom operations. The runtime can 

generate code from the tuples, compile it, and load the 

compiled code dynamically. It is important to note 

that the generated code currently takes into account 

only the Core and the Bootstrap, so it is independent 

of DMLAScript syntax and its Xtext module. Hence, 

the syntax of DMLAScript is currently handled by an 

external tool, and thus should be thought of only as 

syntactic sugar over DMLA’s operation language.  

5 CONCLUSIONS 

Model-driven development has become a feasible 

option to create and maintain complex systems. 

However, static modeling solutions are not always 

sufficient any longer in the modern era of industrial 

applications. Thus, the demand for dynamic modeling 

techniques became a natural tendency in many fields. 

Although extending static models with external 

operation languages and execution frameworks can 

sometimes meet the requirements, it would be more 

elegant, and also due to its design more verifiable and 

customizable, to build the mechanism of operations 

directly into the modeling framework. From the 

theoretical perspective, representing operations as 

modeled entities has been already researched and well 

understood in detail, but a seamless, self-describing 

and non-circular integration of these ideas into a fully 

functional modeling framework has not been 

implemented up till now. 

Our approach, the Dynamic Multi-Layer Algebra 

(DMLA) provides such a practical solution for the 

challenge. DMLA features a highly customizable, 

multi-layer modeling and validation structure that 

allowed us to build a fully modeled operation 

language into it. In general, this language enables 

programming with operations over modeling entities, 

but its real strength only gets to the surface when it 

comes to specifying the validation formulae of multi-

level instantiation in particular. That ability results in 

a fully self-describing, self-validation modeling 

framework, which can validate even its own language 

definition. Moreover, since the operation language 

can be part of any modeled domain, it may be further 

extended or customized.  

Currently, the DMLA environment provides as 

default a high level, Java-like operation language, 

DMLAScript, which is suitable to keep the 

specification of the operation logic within 

manageable size. In the future, we are investigating 

ways to speed up the current validation process by 

parallel execution. We are evaluating the possibilities 

for optimizing the core operations of the validation by 

parallelizing them with GPU support, which could 

strike a balance between the flexibility of the 

bootstrap and the performance of its execution. 
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