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Abstract: Ray tracing is an interesting rendering technique, but remains too slow for real-time applications. There are
various algorithmic methods to speed up ray tracing through uneven screen-space sampling, e.g., foveated
rendering where sampling is directed by eye tracking. Uneven sampling methods tend to require at least one
sample per pixel, limiting their use in real-time rendering. We review recent work on image reconstruction
from arbitrarily distributed samples, and argue that these will play major role in the future of real-time ray
tracing, allowing a larger fraction of samples to be focused on regions of interest. Potential implementation
approaches and challenges are discussed.

1 INTRODUCTION

Ray tracing has been long regarded in the graphics
community as a potential real-time rendering tech-
nique of the future (Keller et al., 2013). There has
been extensive research on real-time ray tracing, rang-
ing from algorithms and implementations, to applica-
tions, to hardware architectures. Recently, GPU ray
tracing performance has improved to the point that it
is widely used to render feature film computer graph-
ics (CG) (Keller et al., 2015), but still falls short of
competing with conventional rasterization methods in
real-time rendering. A high-end GPU ray tracer can
comfortably render primary rays, or simple Whitted-
style ray tracing (Whitted, 1979) in real time, usu-
ally defined as a frame rate of 30 Hz or more. How-
ever, interesting visual effects such as soft shadows,
glossy reflections and indirect illumination require
distribution ray tracing, where several rays are tra-
versed based on a random distribution and averaged
together. Distribution effects remain challenging to
render in real time.

There is a promising set of algorithm-level tech-
niques for reducing the computational effort of ray
tracing, based on uneven sample distributions in
screen space, which concentrate the rendering effort
on regions of interest. These include
• adaptive sampling, where more samples are

placed on regions of the screen with, e.g., high
Monte Carlo variance (Zwicker et al., 2015),

• foveated rendering, where rendering effort is con-

Figure 1: Path traced reference image (top) and error after
16 samples per pixel (bottom; red: high error, blue: low
error).

centrated near the user’s fovea by means of eye
tracking hardware (Weier et al., 2016; Koskela
et al., 2016), and

• sampling based on visual saliency, i.e., the abil-
ity of features to draw the attention of a human
observer (Longhurst et al., 2006).

The example in Fig. 1 illustrates that error is often
concentrated on small areas of the image, therefore,
performance can be significantly improved by adap-
tively focusing samples on these areas. Moreover,
there is an extensive literature on noise-reduction
methods (Zwicker et al., 2015) for distribution ray
tracing, which are often combined with adaptive sam-
pling for the best results.

Currently, a basic difficulty in speeding up real-
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time rendering with the above methods is that most
of them depend on having at least one sample per
screen pixel. This already takes up most of the com-
pute performance of a high-end GPU with state of the
art real-time ray tracing methods (Schied et al., 2017;
Chaitanya et al., 2017; Mara et al., 2017). Conse-
quently, there is little rendering performance left to
distribute additional samples to regions of interest. In-
tuitively, rendered images often have smooth regions
whose lighting could be reconstructed from sparse
samples, but the literature has not yet converged on
a best method to do so.

Some of the methods tried so far have signifi-
cant limitations. For instance, two recent state of
the art real-time ray tracers—one based on denois-
ing (Schied et al., 2017), and the other on foveated
rendering (Weier et al., 2016)—rely on reproject-
ing samples from previous animation frames to the
current frame. Reprojection makes real-time ray
tracing tractable by cheaply increasing the amount
of available samples, but has difficulties with ani-
mated scenes and fast camera movements, as well
as reflections and glossy surfaces. Other methods
are prohibitively expensive for real-time use, e.g.,
those based on compressive sensing (Sen and Darabi,
2011).

The problem of reconstructing a grid image from
sparse samples has been studied in digital signal pro-
cessing (DSP) literature, where it is applicable to,
e.g., image warping and stitching. We argue that ap-
plying DSP methods is a promising future direction
for real-time ray tracing. For best results, sparse sam-
pling methods might be modified to take advantage of
extra information that is available in a ray tracer, e.g.,
depth, normal, and albedo data. In this paper, we ex-
amine the problem of rendering with uneven, sparse
samples and review techniques in the DSP and com-
puter graphics literature that could be applied to the
problem.

This paper is structured as follows. Section 2 re-
views literature on methods to resample sparse data
into grid images. Section 3 summarizes recent work
on real-time ray tracing and its limitations. Section
4 discusses potential approaches to integrate sparse
sampling into real-time ray tracers. Section 5 con-
cludes the paper.

2 SPARSE SAMPLING METHODS

Image interpolation and reconstruction are well un-
derstood when the source image samples are placed
in a regular grid. When the samples are at irregu-
lar positions, these tasks are less well studied. There

are several applications for resampling of this kind,
including, e.g., super-resolution, image compression
and stereo rectification. The proposed methods are
often aimed at specific applications and place special
constraints on their inputs, e.g., the samples may be
constrained to a specific density, or into a regular grid
with small perturbations.

For adaptive sampling, we are interested in meth-
ods that permit input samples to be sparse and nonuni-
formly distributed, as opposed to sampling on a reg-
ular grid. This section focuses on reviewing meth-
ods evaluated with inputs with the above properties.
Moreover, we omit some classes of methods which
are known to be highly expensive, e.g., exemplar-
based interpolation (Facciolo et al., 2009) and com-
pressive sensing (Sen and Darabi, 2011).

A basic approach is Delaunay triangulation be-
tween samples followed by polynomial interpolation
inside each triangle—this can be nearest-neighbor, bi-
linear or bicubic interpolation. Another simple ap-
proach is inverse distance weighting (IDW), where
pixel colors are averages of nearby samples weighted
with the inverse distance to the pixel center. In nat-
ural neighbor interpolation (Boissonnat and Cazals,
2000) a pixel’s color is interpolated from samples that
are its natural neighbors, i.e., the samples whose vol-
umes are chopped when the pixel is inserted to a De-
launay triangulation of the samples. Parallel imple-
mentations of these algorithms typically require sync-
ing operations or special datastructures, which might
make them out of reach in typical real-time time bud-
gets.

Another classic direction of work has been to as-
sume that the sampled signal is band-limited, and ex-
tend Shannon’s sampling theory to irregularly sam-
pled inputs (Strohmer, 1997). In practice, the recon-
struction quality in band-limited methods drops if the
band-limited assumption does not hold (Seiler et al.,
2015).

2.1 Model Fitting

Several methods attempt to fit models such as
splines (Vazquez et al., 2005) to the observed sam-
ples. The output image can then be sampled from the
model.

A recent generalization of model fitting is
generalized morphological component analysis
(GMCA) (Fadili et al., 2010), where images are
represented as combinations of multiple models.
For example, the countours of an image might be
represented as curvelets and repeating small-scale
texture in frequency form.
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2.2 Variational Optimization

A set of methods take a variational approach where
the parameters in model fitting are formulated as an
optimization problem. The optimized cost function
consists of an error term comparing the input samples
to the model, and a regularization term to prefer so-
lutions with properties similar to natural images. An
often exploited property is the redundancy typically
present in natural images, with the regularization term
promoting a sparse representation, for example in a
wavelet domain (Elad and Aharon, 2006).

One class of variational methods which is known
to work well with sparse samples uses a model with
splines placed on a grid (Arigovindan et al., 2005).
Interestingly, variational reconstruction was recently
extended to handle generalized, e.g., noisy or blurred,
samples (Bourquard and Unser, 2013).

2.3 Kernel Regression

In the model-fitting technique kernel regression
(KR) (Takeda et al., 2006), the model places kernel
functions, e.g., splines, at each sample and finds their
parameters locally via least squares optimization. In
contrast, the above spline-based methods tend to place
splines in a regular grid and perform global optimiza-
tion. The technique can be viewed as a generalization
of, e.g., bilateral filtering. Interestingly, KR can be
used for both denoising and resampling.

2.4 Frequency Selective Reconstruction

Downsampling a signal in a regular pattern reflects
frequencies below the Nyquist frequency into lower
frequencies, corrupting the spectrum. A recent, high-
quality method of frequency selective reconstruction
(FSR) (Seiler et al., 2015) is based on an observation
that downsampling in an irregular pattern has, con-
versely, the effect of adding noise to the spectrum.
A good approximation of the high-frequency signal
can be obtained by extracting the dominant frequen-
cies one by one. FSR has been recently improved by
adapting the number of iterations per block based on
local texture (Jonscher et al., 2016), and extending the
method to handle samples placed at non-integer posi-
tions (Koloda et al., 2017).

2.5 Super-Resolution Methods

In the task of multi-frame super-resolution (SR), mul-
tiple low-quality frames, taken from slightly differ-
ent positions and directions, are combined into a sin-
gle high-quality image with a better resolution. SR

has been extensively studied, and there are recent sur-
veys (Tian and Ma, 2011). One popular approach to
SR, dubbed interpolation-based SR in Ref. (Tian and
Ma, 2011), works by first registering samples from all
low-resolution images to a single coordinate frame,
interpolating between them to form a high-resolution
image, and deblurring the result. In SR methods that
adhere to this model, the interpolation component is
directly applicable to the resampling problem. SR
methods are of interest since they often take into ac-
count significant noise in the input images.

2.6 Denoising-based Reconstruction

The above interpolation methods all give some error
compared to an ideal image. In denoising-based re-
construction (Koloda et al., 2015), the error is treated
as noise, and standard denoising algorithms are ap-
plied to remove it. A reliability metric is computed
per pixel and used to adjust denoising strength. In a
later work (Koloda et al., 2016), the reliability metric
is improved to ca. double the image quality improve-
ment.

2.7 Computer Graphics Methods

Sampling has been extensively studied in the com-
puter graphics literature. Research is especially ac-
tive in the efficient generation of sample patterns
with desirable properties, e.g., blue-noise samples via
Poisson disc sampling (Ebeida et al., 2011). Works
that render images from sparse, nonuniform samples
are less common. As in the DSP literature, pro-
posed upsampling methods are often limited to reg-
ular grids (Herzog et al., 2010; Yang et al., 2008).

A very fast approach is to sample a low-resolution
grid, subdivide it in regions where a higher sample
rate is wanted, and fill in missing samples with lin-
ear interpolation (Steinberger et al., 2012; Kim et al.,
2016; Lee et al., 2016). Steinberger et al. (2012) in-
sert subdivisions in a diamond-square pattern based
on a visual saliency model. The adaptive methods of
Kim et al. (2016) and Lee et al. (2016) first sample the
low-resolution grid, and then compute similarity mea-
sures between neighboring pixels to decide whether to
sample or interpolate the intermediate value.

Another fast method is pull-push render-
ing (Gortler et al., 1996), recently used as an
inpainting method for foveated rendering (Stengel
et al., 2016). In pull-push the input samples are
splatted onto a grid image and pulled onto a series
of low-resolution approximations, which are then
pushed back to fill in unknown regions of the original
image. Advantages of pull-push are that it is fast,
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(a) Noisy input (b) Albedo (c) Irradiance (d) Filtered irradiance (e) Final image

Figure 2: Use of auxiliary data in ray tracing reconstruction. The noisy input (a) is decoupled into albedo (b) and irradiance
(c). Denoised irradiance (d) is recoupled with albedo to form the final image (e).

Figure 3: Temporal accumulation of samples over multiple
frames in a scene flythrough animation. Accumulation uses
depth data to reproject the previous frame to a new frame’s
camera. Some samples would blur the result and, therefore,
they are rejected based on auxiliary data (green: depth, red:
shading normal). In addition, some parts of the geometry
were outside the image in previous frames, so accumulated
samples are unavailable (white).

works with irregular sampling, and is able to fill the
image from arbitrarily sparse samples.

Multi-pass normalized convolution has also been
used to inpaint in the unknown regions of a sparsely
sampled image (Galea et al., 2014). In adaptive
frameless rendering (Dayal et al., 2005), samples are
unevenly distributed in both space and time, and im-
ages are reconstructed with a spatio-temporal convo-
lutional filter.

Some sparse sampling methods have been pro-
posed for rasterization pipelines, in order to re-
duce expensive shader executions. An inter-
esting recent technique is coarse pixel shading
(CPS) (Vaidyanathan et al., 2014), where rasterized
primitives are divided into disjoint pixel sets, and
lighting is computed once per set. An advantage of
CPS is that it preserves object silhouette edges while
allowing uneven sample spacing.

Nonuniform samples occur naturally when ren-

dering scenes represented as point clouds. Proposed
point cloud renderers use screen-space interpolation
or reconstruction techniques to fill in a smooth surface
between points, such as pull-push rendering (Mar-
roquim et al., 2008), pixel splatting (Zwicker et al.,
2001) and anisotropic filtering (Pintus et al., 2011).

It should be noted that the aforementioned tech-
niques are all evaluated with noise-free samples,
though the method of Galea et al. (2014) may also
have denoising properties.

3 REAL-TIME RAY TRACING

Classically, real-time ray tracing was restricted to
simple visual effects, as complex distribution effects
require many noisy samples to converge. Recently,
there has been significant progress in adaptive sam-
pling, and the reconstruction of high-quality images
from noisy samples, both documented in a recent sur-
vey paper (Zwicker et al., 2015).

This section examines methods used in a re-
cent batch of real-time ray tracers with complex vi-
sual effects, either based on gaze tracking (Weier
et al., 2016) or denoising reconstruction (Schied et al.,
2017; Chaitanya et al., 2017; Mara et al., 2017).

3.1 Noise Filtering

Mara et al. (2017) use performance-optimized bi-
lateral filters, while Schied et al. (2017) use a hi-
erarchical wavelet transform, similar in principle to
model fitting methods for sparse resampling dis-
cussed above. Larger filter kernels are used in noisy
regions.

Chaitanya et al. (2017) train a recurrent au-
toencoder based on a convolutional neural network
(CNN) to reconstruct lighting based on a window of
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noisy samples. The approach is distinct from other
recent machine learning denoisers (Kalantari et al.,
2015; Bako et al., 2017), which use conventional fil-
ters for denoising and determine the filter parameters
by means of machine learning methods.

3.2 Auxiliary Data

Denoising a rendered image is different from the gen-
eral image processing problem since various noise-
free auxiliary scene data can be cheaply provided to
the renderer, e.g., depth, normal, and albedo buffers.
The recent real-time ray tracers take advantage of
such data in two main ways. The first is to sepa-
rate the image into irradiance and albedo components,
and focus on reconstructing the irradiance, as shown
in Fig. 2. This significantly simplifies the denoising
problem by, e.g., preventing any blurring of texture
details. Mara et al. (2017) split irradiance into matte
and glossy components, which are filtered separately,
while Schied et al. (2017) similarly separate direct
and indirect lighting. Secondly, noise filtering is di-
rected to avoid blurring across edges in the auxiliary
buffers.

3.3 Temporal Accumulation

Path traced samples are sufficiently noisy that recon-
struction from one sample per pixel is challenging.
Most of the recent real-time implementations (Weier
et al., 2016; Schied et al., 2017; Mara et al., 2017)
rely on temporal accumulation from multiple frames
to improve the effective sample count. In this ap-
proach, samples from previous frames are reprojected
to the current frame, as shown in Fig. 3. Extra sam-
ples may be taken to fill image regions that were, e.g.,
occluded in the previous frame. As a drawback, dy-
namic scenes are difficult to handle.

The recurrent autoencoder proposed by Chai-
tanya et al. (2017) takes a different approach of in-
cluding recurrent connections in the CNN model,
which pass hidden data between animation frames.
Moreover, two methods (Chaitanya et al., 2017;
Schied et al., 2017) also employ screen-space tem-
poral antialiasing (Karis, 2014) which is used in com-
puter game engines.

3.4 Nonuniform Sampling

Out of the reviewed works, only Weier et al. (2016)
use nonuniform sampling based on eye tracking. This
is done by ensuring via temporal accumulation that
there is at least one sample per pixel, and placing ad-
ditional samples in the foveal region.

(a) Conventional real-time ray
tracing system

(b) Adaptive ray tracing

Figure 4: Modifications to adapt a conventional real-time
ray tracer (Schied et al., 2017; Mara et al., 2017; Chaitanya
et al., 2017) to use adaptive sampling.

In contrast, some previous works have rendered
images with sparse nonuniform sampling at interac-
tive or real-time rates (Shevtsov et al., 2010; Galea
et al., 2014; Lee et al., 2016), but, to our best knowl-
edge, only in the easier case of noise-free samples ob-
tained via Whitted-style ray tracing or rasterization.

4 DISCUSSION

The above sections reviewed the rich recent literature
on image resampling from scattered samples to a grid,
as well as state of the art real-time ray tracers. A po-
tential low-hanging fruit in real-time ray tracing is to
incorporate adaptive sampling techniques so that, e.g.,
large flat surfaces receive less than one sample per
pixel. The main technical challenge lies in integrating
denoising with sparse sampling. There are multiple
potential approaches toward this goal:

1. Extension of ray tracing denoising methods to
handle scattered input samples.

2. Extension of sparse resampling methods to per-
form denoising.

3. Sparse resampling followed by denoising.

In each case, sparse resampling would be integrated to
the reconstruction component of a ray tracer as shown
in Fig. 4.

Out of the recent real-time ray tracers, two meth-
ods (Schied et al., 2017; Mara et al., 2017) perform
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denoising with bilateral filters, the former using the
filters as a low-level implementation technique for hi-
erarchical wavelet reconstruction. One method (Chai-
tanya et al., 2017) uses a recurrent autoencoder. To
our best knowledge, there is so far no analysis in
the literature on adapting these methods to sparse in-
puts. Bilateral filtering appears conceptually diffi-
cult to adapt since it incorporates radiometric distance
between the target sample and nearby source sam-
ples, which is unavailable if the target pixel was not
sampled—though this is not an issue if only auxil-
iary data is used for edge stopping. Kernel regres-
sion (Takeda et al., 2007) can be viewed as a gen-
eralization of bilateral filtering which handles sparse
inputs.

It may be easier to adapt resampling algorithms,
which often act as denoising filters, to perform the
reconstruction step. To this end, the resampling al-
gorithm should be adapted to use auxiliary data for
kernel size adjustment and edge stopping. In order to
be useful, a resampling method should be able to run
in real time, handle nonuniformly distributed inputs,
and preferably be able to cope with noise in the inputs.
Empirical evaluation is needed to determine which
methods are suitable. Based on a literature survey,
some interesting candidates in recent work are fre-
quency selective reconstruction (Seiler et al., 2015),
kernel regression (Takeda et al., 2006) and variational
interpolation (Bourquard and Unser, 2013).

The most straightforward approach is to perform
resampling and denoising as separate steps. Care-
ful analysis of noise behavior is then needed to en-
sure that resampling does not harm denoising perfor-
mance. Similar requirements apply to the resampling
method as above.

A separate question is how to distribute the adap-
tive samples. Offline adaptive ray tracers most often
sample based on Monte Carlo variance from several
previous samples (Zwicker et al., 2015). Variance
might be computed based on temporal accumulation
as is done in recent work (Schied et al., 2017) to de-
termine denoising filter kernel sizes. Typically, more
samples are needed near edges and fine features in the
image (Overbeck et al., 2009), so a rasterized depth
image could help guide sampling as shown in Fig. 4.
Other auxiliary data might also be used in the spirit of
Lee et al. (2016).

5 CONCLUSION

This position paper argued that a way forward for
real-time ray tracing is to incorporate heavily adap-
tive sampling, placing less than one sample per pixel

in areas that are easy to render, and performing im-
age reconstruction from sparse data. There is a rich
literature on methods to resample from sparse sam-
ples into a grid image, which might be integrated
into ray tracing systems. Three possible implementa-
tion approaches were discussed: extending denoising
methods to take sparse inputs, extending resampling
methods to function as ray tracing oriented denoising
methods, and performing resampling and denoising in
separate steps.
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