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Abstract: Finding basic objects on a daily basis is a difficult but common task for blind people. This paper demonstrates
the implementation of a wearable, deep learning backed, object detection approach in the context of visual
impairment or blindness. The prototype aims to substitute the impaired eye of the user and replace it with
technical sensors. By scanning its surroundings, the prototype provides a situational overview of objects
around the device. Object detection has been implemented using a near real-time, deep learning model named
YOLOv2. The model supports the detection of 9000 objects. The prototype can display and read out the name
of augmented objects which can be selected by voice commands and used as directional guides for the user,
using 3D audio feedback. A distance announcement of a selected object is derived from the HoloLens’s spatial
model. The wearable solution offers the opportunity to efficiently locate objects to support orientation without
extensive training of the user. Preliminary evaluation covered the detection rate of speech recognition and the
response times of the server.

1 INTRODUCTION

According to World Health Organization (WHO,
2014), 285 million people worldwide are estimated to
be visually impaired; a subset of this estimated pop-
ulation which amounts to 39 million people are diag-
nosed blind.

This paper aims to use modern technology to help
people with visual impairment and blindness. This
can improve everyday life quality and help with en-
vironmental orientation and interaction. Blind people
face many challenges when navigating and interacting
with objects and other beings. Particularly in unfamil-
iar environments, this may prove difficult with unpre-
dictable and uncertain events such as the misplace-
ment of an object. What simply seems like forgetting
the location of your coffee cup, is suddenly an ordeal
of sorted interactions to find the missing object.

Within this work, a prototype to detect and iden-
tify objects in digital images, using deep learning
technologies was developed. The prototype, features
a HoloLens setup for the user and can be used to
identify objects in the users environment and describe
them via voice output.

To improve usability of the framework, Microsoft

HoloLens provides not only a mobile mixed real-
ity solution that covers image capturing, microphone
and 3D audio playback functionalities. Furthermore,
it provides a spatial model of the user surroundings
which can be used for distance calculation between
an object in the spatial model and the HoloLens. This
hardware was used within the scope of rapid proto-
typing, the use of less expensive consumer oriented
devices is possible for the final implementation.

The user can issue a voice command to initiate an
environment scan that is analyzed by the server run-
ning a deep learning network. Following this analysis,
the identified objects are articulated in the form of a
voice output or “spatial hearing” for the user. Single
objects are selectable by voice commands and aug-
mented with additional information on direction and
distance.

The 3D audio playback functionality of the
HoloLens enables the user to locate a selected object
by audio signals, virtually emitted from the object.
The possibility of spatial hearing that the HoloLens
offers, enables the user to navigate in relation to the
object of interest.

The paper is structured as follows, section 2 cov-
ers significant research in the field of sensor substitu-
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tion with a focus on blind and visually impaired peo-
ple. Section 3 describes the approach and program-
matic design. In section 4 a preliminary evaluation of
the device is given. The last section 5 lists pros and
cons of the developed prototype and provides ideas
for future possibilities.

2 RELATED WORK

Bach-y-Rita conducted a study that shows how
quickly blind people can train and develop a vi-
sual understanding of the environment around them
through the substitution with other senses, e.g. au-
dio or haptics (Bach-y-Rita, 2004). In this way, his
statement justifies that the eyes are not used to see,
but serve only to absorb information. The brain then
assembles the information into an internal image. In
light of this research, it is arguable that the source of
data is irrelevant and can be replaced.

2.1 Orientation Aids for People with
Impaired Vision

In (Meijer, 1992), an experimental system named
“The vOICe” translated image representations into
time-multiplexed sound patterns. The system worked
with a standard video camera and the image was
translated into a gray-scale image.

The acquired image is processed column by col-
umn from left to right and an audio output is gener-
ated for each column. Each pixel is assigned a tone
and the pitch is determined by the y-coordinate, the
volume by the intensity. When the first column is
played, an acoustic signal sounds. This beep tells the
user that scanning of the image starts from the left
edge. Thus, the user can estimate which horizontal
position the individual elements have in the picture
and at which point in time the picture is played back.
The solution is solid but requires the user to be trained
on the system for a longer time. It is offered free
of charge as Android, Windows and Web application
(Meijer, 2017).

Another system is “SoundView”, it detects objects
by means of attached bar-codes and returns the in-
formation (Nie et al., 2009). Found objects are an-
nounced by speech output. The implementation is fa-
cilitated through a camera, an element that provides
digital signals and a pair of headphones. The bar-
codes on the objects must have a fixed size. This al-
lows the calculation of the distance to found objects.

With the development of smaller communication
devices, (Sudol et al., 2010) presented a mobile
computer-aided visual assistance device. Based on a

regular cell phone, the image is sent via network to
a computer, the image recognition takes place and is
fed back to the user by using a text-to-speech engine.
With this technique the user can identify numbers on
a dollar bill or CD covers.

”EyeCane”, first introduced by (Maidenbaum
et al., 2012), measures the real-world distance be-
tween the device and the object it is pointed at. The
development was influenced by the previous works of
(Meijer, 1992). To measure the distance, the device
uses an Infra-red (IR) beam and creates a correspond-
ing audio signal. Maidenbaum goes a step further and
improves the idea that with point-distance informa-
tion in a virtual 3D setting. This development means
the cane can also be used to make virtual environ-
ments accessible for the blind.

”EyeMusic” on the other hand uses tones from
musical instruments to represent colors of objects. It
extends the work of (Meijer, 1992) by the use of a
musical representation of the image. Five musical in-
struments are used, each of which is represented by
one color. Red for Reggae Organ, Green for Rapmans
Reed, Blue for Brass Instruments, White for Choir
and Yellow for String Instruments (Abboud et al.,
2014). The project heavily collaborated with psychol-
ogists to fit the needs of blind and visually impaired
people.

“Sonic Eye” is a portable device that sends ultra-
sound waves through a speaker attached to the head
(Sohl-Dickstein et al., 2015). These are reflected from
objects in the direction of sound and recorded by
a stereo microphone. The normally inaudible ultra-
sound signal is slowed down and played as a hearable
sound to the user.

The App “Be-my-Eyes” helps users send pictures
into a distributed network of people who volunteer to
classify images and report the information back to the
original users (Wiberg, 2015). Instead of Artifical In-
telligence (AI), the system uses human intelligence to
detect objects. This, however, is not without delay as
estimated waiting times for object detection is gener-
ally two minutes.

2.2 Convolutional Neural Networks for
Object Detection

Computational object detection is used to identify re-
gions of an image that belong to a real-world object.
Classic methods for object detection make use of al-
gorithms like Histogram of oriented gradients (HOG)
(Dalal and Triggs, 2005) and Scale-invariant feature
transform (SIFT) (Lowe, 1999) features. The recent
development in deep learning had also influenced the
field of computational object detection. Nowadays,

HEALTHINF 2018 - 11th International Conference on Health Informatics

556



Convolutional Neural Networks (CNNs) are used to
detect and classify objects within an image or video
stream in nearly real-time (Girshick, 2015).

The You Only Look Once (YOLO) approach to
object detection was developed by (Redmon et al.,
2016) and offers real-time object detection.

Opposed to the traditional procedure where re-
gions are identified and classified, YOLO recognizes
the regions and calculates class probabilities in a sin-
gle step. In this work an improved version of You
Only Look Once v2 (YOLOv2) is used (Redmon and
Farhadi, 2017).

3 METHOD

The software design is based on a client-server ar-
chitecture and depicted in figure 1. To calculate
predictions for the classification of objects, a con-
sumer grade Graphic Processing Units (GPUs) (e.g.
NVIDIA Titan X) is required for this prototype. Thus
a client-server architecture is necessary.

Trough it specification the HoloLens proved to be
a suitable platform for the proof of concept. The hard
and software specification allowed quick implemen-
tation and offered necessary debugging options.

On the client side, the HoloToolkit (Microsoft,
2017a) integrates with Unity3D (Unity Technologies,
2017) and Visual Studio Integrated Development En-
vironment (IDE) (Microsoft, 2017b). The Holo-
Toolkit controls cameras, audio input, 3D audio out-
put, as well as server-communication.

Additional to the audio and gesture control the
HoloLens provides a ”Clicker”, a small gray device
with a button, connected via Bluetooth.

The server runs YOLOv2 (Redmon, 2017b), on
top of darknet (Redmon, 2017a) implemented in C
and Compute Unified Device Architectur (CUDA)
(NVIDIA, 2017).

For the best results in the indoor-setting, a pre-
trained YOLOv2 model is used. The details of the
software stack and further resources are indicated in
the table 1.

3.1 Server-side Object Detection

After the integrated Camera takes a regular Red Green
Blue (RGB) image, in JPG format with the resolution
of 896×504, the image is sent to the server for anal-
ysis.

When the server receives the image, it performs
object detection. A pre-trained model of YOLOv2 is
used and the results are converted to JavaScript Object

Table 1: Software stack showing the software used to create
the prototype. Development IDEs and server-side CNNs are
included.

Development stack
Visual Studio (Microsoft, 2017b)
Unity3D (Unity Technologies, 2017)
HoloToolkit (Microsoft, 2017a)
Server stack
CentOS (Red Hat, Inc., 2017)
Flask (Ronacher, 2017)
darknet (Redmon, 2017a)
Pexpect (Quast and Thomas, 2017)
YOLOv2 (Redmon, 2017b)
Client
Windows Holographic Plat-
form

(Microsoft, 2017c)

Notation (JSON) format (El-Aziz and Kannan, 2014)
and returned to the client.

YOLOv2 follows the approach of “only look
once” for object recognition applied to each image.
As a result, bounding boxes are created and the prob-
ability that an object belongs to a certain class inside
the bounding box is calculated.

YOLOv2, trained on the 2007 and 2012 PASCAL
Visual Object Classes (VOC) datasets, has proven to
be the fastest detector based on the VOC dataset (Red-
mon et al., 2016), demonstrating a solid detection re-
sult that is twice as precise as real-time detectors such
as 100Hz Deformable Parts Model (DPM) (Girshick
et al., 2015) and 30Hz DPM.

The server is returning 2D coordinates to the
HoloLens, then 3D real-world coordinates of the ob-
ject are calculated on the device based on the received
2D data and the virtual 3D model, generated by the
HoloLens. The virtual 3D model is mapped by a real-
time process, supported by the HoloLens Time-of-
Flight (TOF) system and visible light cameras. This is
necessary to provide distance announcements for the
individual recognized objects.

The estimation of real world coordinates is
achieved by using the spatial model of the Holo-
Toolkit. While moving, the TOF and RGB cameras
are mapping the surroundings and create a spatial
model of the room. Based on this model the dis-
tance to the selected object can be calculated. How-
ever through the low resolution of the spatial model
the distance can only be estimated.

If the user chooses an individual object by voice
command, a pink virtual cube is placed in the virtual
scene of the HoloLens display to mark the selected
object. The virtual scene is generated by scanning and
mapping the environment while HoloLens is active.
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Figure 1: Diagram of the technical architecture. HoloLens gathers Images and Information through sensors. Information is
forwarded to the server running object detection with YOLOv2. Information is transferred back to HoloLens. User receives
3D audiovisual feedback on scanned scene and can continue to interact with the system. The Inertial measurement unit (IMU)
is used for head tracking.

This scene is then accessed to place objects within the
virtual environments, respecting real-live boundaries
and create a higher immersion factor while using the
device. This enables the software to fix an object in
the virtual world even if the user moves the device.
Within this work this function is used to calculate dis-
tances to objects and highlight selected objects to sup-
port people with visual impairments.

Client communication is implemented with a
server via Internet connection. This communica-
tion has been implemented via Representational State
Transfer (REST) interface (Costa et al., 2014) which
also ensures that multiple clients can communicate
with the server.

3.2 User Interaction

In order to make the operation of the program suitable
for everyday use, the possibility of control via voice
commands has been integrated. All functions of the
program can be executed by voice command.

Firstly, the user must be given an opportunity
to take a photo so that it can be processed. This
action is triggered by activating the HoloLens via
voice command “Scan” or pressing of the “Clicker”,
a bluetooth-connected button device, as an alternative
robust hardware trigger.

If objects are found in the recorded image, their
names are played back as voice output. Table 2 shows
the voice commands that can be issued by the user and
following actions taken on client- and server-side.

Understanding of audio commands is imple-

mented by using the Speech Recognition Platform,
which is part of Microsoft’s Universal Windows Plat-
form (UWP). The audio speech output is realized
on the UWP SpeechSynthesizer which is bridged to
Unity3D. Spatial 3D audio playback is also imple-
mented by using the UWP SpatialSoundManager. All
three functionalities can be used in Unity3D by using
the Microsoft HoloToolkit (Microsoft, 2017a).

At the moment only English is supported, which
limits recognition performance for non-native speak-
ers.

The voice output informs the user between indi-
vidual steps and guide him through the program. For
example, if a photo has been taken, the user is in-
formed that there is a short waiting time for object
detection. As soon as results are returned, the list of
found objects with their names is announced automat-
ically. Figure 2 represents a situation where the user
issues a voice command to initiate the object detec-
tion.

The locate function, triggered by naming the cor-
responding object, positions a virtual sound source in
the position of the found object. Using the placed
sound source, the loudspeakers of HoloLens are used
to determine the direction and distance of the selected
object.

4 EVALUATION

The following section covers the preliminary evalu-
ation of the prototype. For this position paper, the
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Table 2: User, Client and Server interaction. First column contains the voice commands issued by the user. Second and third
column describe the actions executed by client and server. ∗Note that in the fourth line the identifier “Cup” can be replaced
by any other Object recognized by YOLOv2 in the scene.

User Client Server
“Scan” • records image • receives picture

• sends it to server • start object detection
• reads list of objects aloud • return list of recognized objects

“Objects” • rereads list of objects aloud
“Cup”∗ • highlights cup with pink cube
“Distance” • announces distance to selected object

• start 3D audio ping
“All” • selects or deselects all found objects

Figure 2: User issuing the “Scan” command using voice or
the HoloLens Clicker to detect objects in the field of view.
The detected objects are announced by the HoloLens voice
output. The Debug interface can be seen in the background.

quality of the speech recognition, the efficiency of the
object detection and the response times of the system
have been evaluated.

4.1 Speech Recognition

In order to test how well voice commands are recog-
nized and processed, the debug output for each rec-
ognized voice command has been used. The voice
commands that should be recognized were limited to
“Scan”, “Start”, “Stop” and “Chair”. Each word was
pronounced 25 times by a non-native speaker. The
word “Chair” is only a placeholder and could be re-
placed by any other object known in the set of object
classes. In this test, 83 % of the voice commands were
detected correctly and processed immediately. There
is a problem with multi-word terms such as “potted
plant” or “edible fruit” being pronounced. The multi-
word term problem has not been part of this evalua-
tion.

4.2 Object Detection

The object detection of YOLOv2 as tested in the pub-
lication (Redmon, 2017b) is 65.5 % correct on the
VOC 2007 dataset.

The remaining 34.5 % of errors are split into
19.0 % Localization errors, 6.75 % similar object
class detection errors, 4.75 % background detection
errors and lastly, 4 % of errors are classified as other.

The YOLO9000 model features 9000 object
classes (Redmon and Farhadi, 2017) and enables the
object detection to find a larger variety of everyday
objects. The detection data for objects has been de-
rived from Microsoft’s Common Object in Context
(COCO) and the detection task is based on the Im-
ageNet dataset (Russakovsky et al., 2015).

YOLO9000 gets 19.7 mAP on the ImageNet de-
tection validation set (Redmon and Farhadi, 2017).

4.3 Response Times

In order to measure the processing time of the results
on the client, the time between the reception of results
and processing was run 100 times on a NVIDIA Titan
X GPU. The image is 896× 504 pixels in size and
contains three objects that are found. During the test
runs, the position of the HoloLens was not changed.
The results are summarized as the median of 100 runs.
The accumulated response time was approximately
one second. This result can be divided into an av-
erage of 627 ms for network transport, 312 ms for
object detection and client processing took 101 ms.

5 CONCLUSION

This paper shows, that recent technology advances in
deep learning and mixed reality hardware allow faster
development of assistive technologies. The proposed

Object Detection Featuring 3D Audio Localization for Microsoft HoloLens - A Deep Learning based Sensor Substitution Approach for the
Blind

559



system offers many possibilities to simplify the every-
day life of those who are visually impaired or blind
and can be used without any previous training on the
device.

The following section discusses problems and op-
portunities on how a continuation of this work could
evolve. The augmented scene shows inaccuracies, es-
pecially on small objects. This leads to inaccurate
highlighting of some selected objects due to missing
calibration.

Another problem is that the compact hardware of
the HoloLens is rather unpleasant and uncomfortable
after long periods of wear. Limited battery capacity
and a permanently required network connection also
limit the mobility of the prototype.

The next version of the HoloLens is suppos-
edly deep learning capable (Microsoft Research Blog,
2017). Considering that the computing power of the
new version is strong enough, object detection could
be performed directly on the HoloLens.

For this reason the HoloLens was used during
the prototyping process, the use of less costly and
more durable hardware with well attuned specifica-
tions needs to be considered.

In order to provide a quicker overview for peo-
ple with less severe visual impairment, texts with the
names of object classes could be displayed in the field
of view.

In addition to object recognition, there is extra in-
formation that can be obtained from captured images.
Furthermore, the spatial awareness of the HoloLens
would make it possible to warn the user if he/she is
standing in front of a wall or obstacle at a certain dis-
tance. As proven by (Garon et al., 2016), the resolu-
tion of depth information can be increased using an
external depth sensor.

Other applications already recognize signs or bank
notes (Sudol et al., 2010), using various Optical Char-
acter Recognition (OCR) frameworks. OCR software
could be combined into the prototype to extend these
functionalities. The program could also be extended
to include recognition of humans, signs or texts in
real-time.
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