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Abstract: Super-resolution reconstruction (SRR) is aimed at increasing spatial resolution given a single image or multiple
images presenting the same scene. The existing methods are underpinned with a premise that the observed low
resolution images are obtained from a hypothetic high resolution image by applying a certain imaging model
(IM) which degrades the image and decreases its resolution. Hence, the reconstruction consists in applying an
inverse IM to recover the high resolution data. Such an approach has been found effective, if the IM is known
and controlled, in particular when the low resolution images are indeed obtained from a high resolution one.
However, in a real-world scenario, when SRR is performed from images originally captured at low resolution,
finding appropriate IM and tuning its hyperparameters is a challenging task. In this paper, we propose to
optimize the SRR hyperparameters using a genetic algorithm, which has not been reported in the literature so
far. We argue that this may substantially improve the capacities of learning the relation between low and high
resolution images. Our initial, yet highly encouraging, experimental results reported in the paper allow us to
outline our research pathways to deploy the developed techniques in practice.

1 INTRODUCTION

Effectiveness of a number of computer vision systems
which include some object detection or pattern recog-
nition tasks, strongly depends on spatial resolution of
the input images. In many cases, obtaining images of
sufficiently high resolution is difficult and it is subject
to a number of trade-offs. They range from the cost
of image acquisition to accessibility and safety (e.g.,
for medical imaging). Overall, this motivated the re-
searchers to develop the algorithms that would allow
a high resolution image be reconstructed from a series
of images of lower spatial resolution—this process is
known as super-resolution reconstruction (SRR) and
it has gained considerable attention over the years.
Despite many advancements, in many cases the state-
of-the-art solutions are still insufficient to deploy SRR
in practical applications.

1.1 Related Work

SRR was considered for a variety of computer vision
problems, including medical imaging (Yang et al.,
2015; Jiang et al., 2014), analysis of facial images
(Jiang et al., 2014), satellite imaging (Zhu et al.,
2016), document image processing (Capel and Zis-

serman, 2000), or microscopy imaging (Lukinavičius
et al., 2013). SRR can be executed (i) given a sin-
gle image (Demirel and Anbarjafari, 2011), (ii) from
a sequence of images acquired with some shifts in the
spatial domain (Li et al., 2008b), or (iii) by processing
hyper-spectral images (Qian and Chen, 2012).

For single-image SRR, example-based learn-
ing (Timofte et al., 2014) is usually employed, which
exploits a large collection of examples—the recon-
struction consists in matching image patches be-
tween images of low and high resolution. This al-
lows for achieving visually plausible results, but may
easily lead to introducing some artifacts. The re-
cent advancements in single-image SRR are attributed
mainly to deep learning, which is being actively ex-
ploited for this purpose. Dong et al. (2016) has
shown that a super-resolution convolutional neural
network of relatively simple architecture outperforms
the state-of-the-art example-based methods. Also,
much deeper architectures coupled with fast residual
training were found effective (Kim et al., 2016).

Deep networks have not been exploited for
multiple-image SRR, which is considered in the re-
search reported here. The existing methods usually
employ a parametrized imaging model (IM) that sim-
ulates the process of degrading a hypothetical high-
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resolution image into a set of N observed low resolu-
tion ones—IL =

{
I(l)i : i ∈ [1..N]

}
. In general, such

models include image warping, blurring, downsam-
pling and finally contamination with the noise (Nas-
rollahi and Moeslund, 2014). Some of the IM parame-
ters are specific to each I(l)—basically, they stand for
the differences within IL and they are concerned with
the noise distribution and subpixel shifts between I(l)i .
SRR consists in determining these parameters given
IL, which is an ill-posed optimization problem—it
is usually solved by employing the Bayesian frame-
work (Villena et al., 2004) or other optimization tech-
niques with some regularization imposed to provide
appropriate balance between sharp edges and spatial
smoothness of the reconstructed high-resolution im-
age I ′(h) (Yue et al., 2016). A thorough study on
the regularization in SRR has been reported by Pana-
giotopoulou and Anastassopoulos (2012). Another
fairly popular optimization technique applied here is
the projection onto convex sets (Akgun et al., 2005),
which consists in updating the high-resolution tar-
get image iteratively based on the error measured be-
tween I(l) and I ′(l)—a downsampled version of the
reconstructed I ′(h), degraded using the assumed IM.
Among other methods, adaptive Wiener filter (Hardie,
2007) and random Markov fields (Li et al., 2008a)
were used to specify the imaging model. Importantly,
an IM is controlled with a set of hyperparameters that
are common for all low-resolution images.

A commonly adopted way to evaluate the outcome
of SRR is to degrade a high-resolution image I(h) us-
ing an IM defined on a theoretical basis to obtain the
set IL (Farsiu et al., 2004). Subsequently, SRR is
employed to reconstruct I ′(h) from IL, and its qual-
ity is assessed based on the similarity between I ′(h)
and I(h), measured with peak signal-to-noise ratio
(PSNR) or structure similarity index (SSIM) (Wang
et al., 2004). Such a scenario makes it possible to
evaluate the optimization process, but it does not ver-
ify whether the assumed IM is appropriate. The latter
is often done only qualitatively—SRR is performed
for camera-captured images and the outcome is as-
sessed visually (rather than quantitatively). Overall,
the problem of selecting IM and tuning its hyperpa-
rameters has not been deeply studied in the literature
and it remains an open issue.

1.2 Contribution

Our contribution consists in proposing a genetic al-
gorithm (GA) to optimize the hyperparameters of an
SRR process (including the IM), so as to increase its
accuracy in recovering high resolution image data.
Learning the relation between the images that have

been captured at different native resolution is in con-
trast to many works, in which the IM is assumed a
priori and it is used to generate the validation data.
In the work reported here, we initially verify the pro-
posed concept—we validate our new algorithm (GA-
SRR) by using it to optimize the hyperparameters of a
well-established SRR method (Farsiu et al., 2004) ap-
plied to reconstruct artificially degraded images. Im-
portantly, our proposed framework is fairly generic
and extendable, and we outline our intended research
pathways to deploy it in a realistic scenario.

1.3 Paper Structure

In Section 2, we present the SRR algorithm, which
we exploit to validate our concept, and we explain
the hyperparameters that we optimize. Our GA-SRR
is demonstrated and discussed in Section 3 and our
initial experimental results are reported in Section 4.
Finally, in Section 5, we conclude the paper and we
outline the goals of our ongoing research.

2 SRR FROM MULTIPLE
IMAGES

The majority of multiple-image SRR methods assume
that any observed image I(l) could be obtained from
an image of higher resolution I(h) by applying the fol-
lowing generic degradation model (Yue et al., 2016):

I(l)i =DiBiWiI(h)+ni, (1)

where W is the warp matrix (it includes translation
and rotation), B is the blur matrix, D downscales
the image, and n stands for the additive noise. Im-
portantly, if the observed images are captured by the
same sensor, it may be assumed that B and D are
common for all the images in the series (thus, they do
not depend on i). Hence, the differences among the
observed images are resulting from translations and
rotations, as well as from the additive noise.

A super-resolved image is found based on maxi-
mum a posteriori (MAP) theory as a solution (X ) of
a minimization problem:

I ′(h) = argmin
X

N

∑
i=1

ρ
(
I(l)i ,DBWiX

)
+λU(X ),

(2)
where ρ(·) is an image similarity metric and U(·)
is the regularization term. The existing SRR meth-
ods present different approaches towards defining the
degradation matrices, regularization terms and opti-
mization techniques.
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For our proof of concept, we selected the method
proposed by Farsiu et al. (2004). They exploit the L1
norm to measure the similarity ρ, B matrix imple-
ments the Gaussian blur, and for regularization, the
total variation method (Rudin et al., 1992) is com-
bined with a bilateral filter:

U(X ) =
P

∑
l=−P

P

∑
m=−P

α|m|+|l|
∥∥∥X −Sm

y S
l
xX
∥∥∥

1
, (3)

where Sl
x and Sm

y shift an image by l and m pix-
els in horizontal and vertical direction, respectively,
and 0 < α < 1 is a parameter of spatial decay. The
reconstructed image is obtained by minimizing the
term (2), which is done with the iterative steepest gra-
dient descent—the update is obtained as

Xn+1 = Xn−β
(

dρ
dX (Xn)+λ

dU
dX (Xn)

)
, (4)

where

dρ
dX (Xn) =

N

∑
i=1

W T
i BTDsgn(DBWiXn−I(l)i ),

(5)
dU
dX (Xn) = ∑

l
∑
m

α|m|+|l|S′sgn(Xn−Sm
y S

l
xXn), (6)

S′ = 1−S−m
y S−l

x . (7)

Overall, the SRR process is controlled with (i) a sin-
gle parameter (σ) that defines the width of the Gaus-
sian kernel used in B, (ii) P used in the regulariza-
tion (3), and (iii) the remaining hyperparameters re-
lated to the optimization process (4)–(7), namely: α,
β, λ and the number of gradient descent iterations (Γ).
It is worth noting that Farsiu et al. (2004) applied their
SRR method to several images, for each of which dif-
ferent values of the hyperparameters were found op-
timal. The parameters specific to every single pre-
sented image I(l)i ∈ IL are concerned with the Wi
matrix, and they are determined by subpixel registra-
tion of the images within each IL. This is done prior
to the SRR process and the values in Wi remain fixed
afterwards.

3 GENETIC ALGORITHM TO
OPTIMIZE SRR

SRR algorithms are controlled with a number of hy-
perparameters, which severely influence the quality
of the reconstructed image, and the problem of their
tuning has been paid little attention in the literature so
far. Therefore, we expect a framework for optimizing
these hyperparameters to improve the capacities of

existing SRR methods, and hopefully this may lead to
developing adaptive IMs that could better reflect the
relation between images of low and high spatial reso-
lution. Motivated by that, we explore the possibilities
of applying a GA to optimize the SRR hyperparam-
eters. In the research reported here, we demonstrate
that the proposed GA-SRR algorithm is successful in
optimizing a well-established SRR technique (Farsiu
et al., 2004). Importantly, the essential components of
our framework are though to be highly generic, hence
we intend to embrace other SRR methods, which is
discussed later in Section 5.

3.1 Outline of GA-SRR

The pseudocode of the proposed algorithm is pre-
sented in Alg. 1. A population P of NP individuals
is initialized (line 1)—a chromosome of each indi-
vidual defines the values of hyperparameters which
control the SRR process (these values are initialized
randomly within an allowed range specific to each hy-
perparameter). Subsequently, each individual in P is
considered for mutation with the probability Pm and
the selected individuals (PM) are excluded from the
individuals selected for crossover (PC) (lines 3–4).
The individuals in PC are paired and crossed over to
create an offspring population P ′C of the same size as
PC, hence #PC = #P ′C. During crossover (line 5) of
two individuals pa and pb, each parameter value of
the child pa+b is copied either from pa or pb with
equal probability. For each individual selected for
mutation, one value in the chromosome is selected
and modified within the allowed range (line 6). The
existing population P is appended with the mutated
individualsP ′M and those created during the crossover
(P ′C)—this creates a new population P ′ (line 7). Fit-
ness η of each new solution is retrieved (this is ex-
plained later in Section 3.2) to select the NP fittest in-
dividuals (line 11). When the stop condition is met
(line 13), the best solution pB is returned (line 14),
which configures the SRR method.

3.2 Computing the Fitness

The process to retrieve the fitness η of an individ-
ual pi is illustrated in Fig. 1a. Basically, this process
requires a set of M high-resolution images, each of
which is coupled with a set of low-resolution counter-
parts IL—an example is presented in Fig. 1b (here,
four low-resolution images in IL present the same re-
gion as a high-resolution image I(h)).

To evaluate the fitness η of an individual pi, the
hyperparameters defined by its chromosome are used
to configure the SRR process, which is run to pro-
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Similarity between
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high-resolution
images I(h)
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Individual pi Fitness η(pi)
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2

I(l)
3 I(l)

4

Figure 1: The process of computing the fitness η(pi) of an individual pi (a) along with an example of input images of low
(I(l)

i ) and high (I(h)) resolution (b).

Figure 2: Images used to train GA-SRR.

Algorithm 1 A genetic algorithm for optimizing SRR
hyperparameters (GA-SRR).

1: Initialize population P = {pi} of size NP;
2: repeat
3: PM ← SELECTFORMUTATION(P , Pm);
4: PC←P \PM;
5: P ′C← CROSSOVER(PC);
6: P ′M ← MUTATE(PM);
7: P ′←P∪P ′M ∪P ′C;
8: for all {pi} ∈ P ′ do
9: η(pi)← FITNESS(pi);

10: end for
11: P ← SELECT(P ′, NP);
12: pB← argmaxpi∈P{η(pi)};
13: until STOPCONDITION;
14: return (pB);

cess each IL and reconstruct a high-resolution image
I ′(h). Quality of the reconstruction is assessed based
on the similarity between I ′(h) and I(h), measured
with SSIM. The final fitness η(pi) is obtained as the
mean of M similarity scores—basically, the better the
SRR is, the more similar is the reconstructed image
to the ground truth, and this similarity is expected to
increase during the evolutionary optimization.

4 EXPERIMENTAL VALIDATION

In order to verify the capacities of the proposed ap-
proach to optimize the SRR hyperparameters, we
have run an experiment in a controlled environment
for M = 10 artificially degraded satellite images of
200× 200 pixels, presented in Fig. 2. Each high-
resolution image I(h) was subject to a small transla-
tion, followed by the Gaussian blur, and downsam-
pled to 100×100 pixels—for each I(h), we generated
N = 25 downsampled images I(l). From these im-
ages, we reconstruct the high-resolution image using
the algorithm by Farsiu et al. (2004), whose hyper-
parameters are optimized with GA-SRR. The values
of the hyperparameters were initialized in the follow-
ing ranges, set based on the results reported in the
paper (Farsiu et al., 2004): α ∈ (0,1), β ∈ (0,200),
λ ∈ (0,0.2), Γ ∈ [1,20], σ ∈ (0,5) and P ∈ [1,5]. We
implemented the algorithms in C++ (using OpenCV
library) and we ran the experiments on an Intel Xeon
3.2 GHz computer with 16 GB RAM.

As our goal here was to verify the behavior of
the genetic algorithm, we observed the fitness (i.e.,
the average SSIM for M samples) in subsequent iter-
ations of the GA optimization. We ran the process
10 times and we stop the optimization after 10 iter-
ations (which we found sufficient to verify the con-
cept). Average and best fitness in subsequent itera-
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a) I(h) b) I ′(h), SSIM = 0.344 c) I ′(h), SSIM = 0.670

d) I(l) e) I ′(h), SSIM = 0.711 f) I ′(h), SSIM = 0.843

Figure 4: Examples of an image from the training set: a) I(h), I(l) and reconstructed I ′(h) using different hyperparameters.
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Figure 3: Average and best fitness in subsequent genera-
tions of GA-SRR.

tions along with the standard deviation are presented
in Fig. 3. It may be seen that the SRR quality grows
during the optimization and the standard deviation of
the best fitness decreases, which confirms the conver-
gence capabilities of the proposed GA. In addition,
we inspected the results qualitatively—an example of
the reconstruction improvement during the GA opti-

mization is presented in Fig. 4. The figure presents the
input I(h) and I(l) images (a, d) alongside four exam-
ples of I ′(h) obtained within a single run of GA-SRR
(b, c, e, f). It may be seen that during the optimiza-
tion process, the reconstruction quality improves both
quantitatively and qualitatively. For low SSIM val-
ues (b, c), it may be concluded that the regularization
is too strong, which results in observing less details
than in the input low-resolution image I(l). Impor-
tantly, the final image (f) contains much more details
than I(l), though still less than the original I(h) im-
age (a)—however, this is obtained after only 10 gen-
erations of the GA. It is worth noting that the ranges
of hyperparameter values are based on the results re-
ported in the literature—overall, this indicates high
sensitivity of the reconstruction process to its param-
eters and confirms that determining their optimal val-
ues is not a trivial task.

Although we have not run multi-fold cross-
validation tests at this stage of our research, we
applied the hyperparameters obtained at subsequent
GA-SRR iterations (we exploited the best run out of
the 10 performed) to reconstruct images that were not
included in the data set used for training. This allowed
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a) I(h) b) I ′(h), η = 0.551, SSIM = 0.611 c) I ′(h), η = 0.701, SSIM = 0.733

d) I ′(h), η = 0.693, SSIM = 0.790 e) I ′(h), η = 0.794, SSIM = 0.875 f) I ′(h), η = 0.857, SSIM = 0.925

Figure 5: Example of the SRR applied to an image not included in the training set: ground-truth I(h) (a) and five reconstructed
I ′(h) obtained using different hyperparameters obtained during GA-SRR process (b–f).

us to initially verify the universality of the optimized
hyperparameters. An example of such an image is
presented in Fig. 5. It is worth noting that the values
of SSIM measured between the original I(h) and re-
constructed I ′(h) present the same tendency as the fit-
ness η. Importantly, the best reconstruction result (f)
presents similar detail level to that visible in the orig-
inal image (a), rendering SSIM = 0.925.

5 CONCLUSIONS AND FUTURE
WORK

In this paper, we report our initial study on using GAs
for optimizing the SRR hyperparameters. This is an
important problem, as both the IM assumed for recon-
struction, as well as the reconstruction process itself
are sensitive to their parameters. Here, we demon-
strated that the proposed GA-SRR framework is ca-
pable of optimizing a well-established SRR method.
Although the tests were run for artificially degraded
images rather than for images originally captured at
different resolution (still, such validation scenario is
commonly adopted in the state-of-the-art works on
SRR), the obtained results confirm that the general
idea standing behind our approach is correct. This,
in turn, allows us to outline the further research steps
towards addressing more realistic scenarios.

The main goal of our ongoing research is to ex-
ploit the proposed framework to configure both an
IM, so that it reflects the relation between images
originally captured at low and high resolution, as well
as the hyperparameters of an SRR method which is
based on that IM. This will allow us to adapt an IM
given a training set of low and high-resolution images,
captured using two different sensors (e.g., Sentinel-
2 and SPOT satellites, respectively)—afterwards, the
learned IM would be suitable for increasing the res-
olution of images having similar characteristics as
those in the training set (i.e., Sentinel-2 images, re-
ferring to the given example). Obviously, the ground-
truth high-resolution images will be required only for
training to define the IM.

Creating such a solution will require solving sev-
eral problems. First of all, we will make the IM more
configurable (at this stage only the width of the Gaus-
sian kernel is considered) to make it capable of mod-
eling the real-life downsampling process. As a conse-
quence, appropriate SRR method needs to be selected
that will be appropriate to optimize the IM parameters
for each presented sample. Another important issue is
concerned with measuring the similarity between I(h)
and I ′(h). In the reported study, I ′(h) is reconstructed
from the set IL, obtained from I(h), which is used as
the ground truth, hence the differences between I(h)
and I ′(h) originate only from applying the IM fol-

ICAART 2018 - 10th International Conference on Agents and Artificial Intelligence

604



lowed by the reconstruction process. While simple
measures (like PSNR or SSIM) are sufficient here, it
is much more challenging to measure the similarity
between images that have been captured using differ-
ent sensors, at various spatial resolution. An example
of such images was shown earlier in Fig. 1b—I(h) and
I(l)i were captured by different satellites, and certainly
the reconstructed image would be visually different
from I(h). Importantly, the differences related to the
detail level may be negligible compared with those
incurred by the global variations. We have found the
keypoint detectors to be quite promising here (Kawu-
lok et al., 2017) and we will consider employing them
to evaluate the fitness. Overall, we currently explore
how to exploit the proposed framework to adapt an IM
alongside an SRR technique to images acquired by a
given sensor, which will be an important step towards
deploying SRR in real-life scenarios.
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