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Abstract: Mobile devices including smartphones and wearable devices are increasingly gaining popularity as platforms
for collecting and sharing sensor data, such as the accelerometer, gyroscope, and rotation sensor. These
sensors are used to improve the convenience of smartphone users, e.g., supporting the mobile UI motion-
based commands. Although these motion sensors do not require users’ permissions, they still bring potential
risks of leaking users’ private information reflected by the changes of sensor readings. In this paper, we
investigate the feasibility of inferring a user’s handwritten pattern on a smartphone touchscreen by using the
embedded motion sensors. Specifically, our inference attack is composed of two key steps where we 1) first
exploit the dynamic time warping (DTW) technique to differentiate any pair of time-series sensor recordings
corresponding to different handwritten patterns; and 2) develop a novel sensor fusion mechanism to integrate
information contained in multiple motion sensors by exploiting the majority voting strategy. Through extensive
experiments using real-world data sets, we demonstrate the effectiveness of our proposed attack which can
achieve 91.4% accuracy for inferring smartphone users’ handwritten patterns.

1 INTRODUCTION

The ubiquity of mobile devices such as smart-
phones and wearable devices together with their ever-
growing computing, networking, and sensing powers
have been increasingly changing the landscape of our
daily lives. These devices are often equipped with
various embedded sensors including the Global Po-
sitioning System (GPS) sensor, camera, microphone,
the environmental sensor (e.g., the ambient light sen-
sor and the barometer), and the motion sensors (e.g.,
the accelerometer, gyroscope, rotation sensor). These
sensors have been effectively utilized to improve the
convenience of smartphone users. For instance, the
GPS can be used for positioning and the motion sen-
sors can be leveraged for mobile gaming.

Within these built-in sensors, some require users’
permission to obtain access (such as the GPS, cam-
era, microphone) because these sensors are explic-
itly utilized for collecting users’ private information
(such as location, image and speech). In comparison,
motion sensors such as the accelerometer, gyroscope
and rotation sensor do not require users’ permissions,
probably due to the assumption that data collected by
these sensors is not sensitive. Motion sensors can pro-

vide recordings of acceleration, rotation and direction
with high precision and accuracy, which can enable
applications that provide convenient functions for the
users. For example, a game can utilize the gravity sen-
sor data of a smartphone to infer users’ different ges-
tures, such as tilt, shake, rotation, or swing (?). All the
measurements of the accelerometer, gyroscope, and
rotation sensor in smartphones running on the iOS
system and the Android system can be accessed with-
out requiring any user permission (Xu et al., 2012).

However, even motion sensors that do not require
explicit permissions are still vulnerable to privacy at-
tacks since their measurements are closely correlated
with users’ sensitive behavior patterns. With the in-
creasing development of motion sensors in smart-
phones, the risks of leaking a user’s sensitive in-
formation through an installed third-party applica-
tion exploring motion sensors have raised more pri-
vacy and security concerns. For instance, Marquardt
et al. (Marquardt et al., 2011) utilize the vibra-
tions detected by smartphone accelerometer to infer
the user’ inputs to a nearby keyboard. Michalevsky
et al. (Michalevsky et al., 2014) show that exist-
ing gyroscopes on smartphones are sufficiently sen-
sitive to measure acoustic signals in the vicinity of
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the smartphone to identify the speaker’ private infor-
mation and even parse speech. These security and
privacy breaches demonstrate that the motion sensors
are possible side channels for attackers that aim to in-
fer users’ sensitive behavior patterns (Xu et al., 2012;
Marquardt et al., 2011; Michalevsky et al., 2014).

In this work, we aim to infer users’ handwritten
patterns by exploiting the motion sensors embedded
in the smartphones, which has not been investigated
in the literature to the best of our knowledge. The
fundamental intuition of our attack is that the users’
handwritten behaviors and the changes of the smart-
phone motions are closely correlated with each other.
During a writing event, the force from the users’ fin-
ger on the touchscreen would cause changes of the
motion sensor measurements, which would follow
certain patterns corresponding to different contexts
of handwritten behaviors. By utilizing the changes
of motion sensor readings, the attacker can therefore
infer users’ handwritten patterns on the smartphone
touchscreen.

More specifically, our proposed attack is com-
posed of two key steps where we 1) first exploit the
dynamic time warping (DTW) (Berndt and Clifford,
1994) technique to evaluate the similarity between
any pair of time-series sensor recordings, in order
to differentiate users’ various handwritten patterns.
This DTW-based similarity evaluation technique can
be utilized for constructing template sensor signals
corresponding to different handwritten patterns (un-
der the training mode), as well as inferring the incom-
ing handwritten event by matching the observed sen-
sor measurement with the constructed template sen-
sor signals (under the testing mode); and 2) develop
a novel sensor fusion mechanism to integrate infor-
mation contained in multiple motion sensors by ex-
ploring the majority voting strategy (Lam and Suen,
1997). In summary, our key contributions include:
• We investigate the unique patterns of users’ hand-

written events in terms of measurement changes
of motion sensors embedded in the smartphones.
Our observations raise the awareness of motion
as a significant channel that may leak smartphone
users’ handwritten patterns.

• We exploit the dynamic time warping technique
to measure the distance between any pair of time-
series sensor recordings, in order to distinguish
users’ handwritten patterns on the smartphone
touchscreen.

• We further propose a novel sensor fusion mech-
anism by leveraging the majority voting strategy
to integrate information recorded by multiple sen-
sors, in order to enhance the overall accuracy of
inferring users’ handwritten patterns.

• We present the design of our attack that uti-
lizes observed motion sensor readings to stealthily
record the user’s inputs on the touchscreen.
Extensive experiments on real-world data sets
demonstrate the effectiveness of our attack which
can infer the contexts of users’ secret inputs with
up to 91.4% accuracy.

2 BACKGROUND AND RELATED
WORK

In this section, we will first describe the motion sen-
sors embedded in the smartphones and then discuss
existing attacks that aim to infer users’ private in-
formation by exploiting measurements recorded by
smartphone sensors.

2.1 Motion Sensors

Since motion sensors such as the accelerometer, gyro-
scope and rotation sensor are integrated into a smart-
phone, they bring the opportunity to assist navigation,
location, etc., with knowledge about the motion of the
smartphone users.
Accelerometer: the accelerometer measures the ac-
celeration in m/s2, which is the rate of change of ve-
locity with time, of a smartphone along three axes:
x-axis (lateral or left-right), y-axis (longitudinal or
forward-backward), and z-axis (vertical or up-down)
(Xu et al., 2012).
Linear Accelerometer: the linear accelerometer
measures the acceleration effect of the smartphone
movement, excluding the effect of the Earth’s grav-
ity on the device. It is typically derived from the ac-
celerometer, where other sensors (e.g. the gyroscope)
can help to remove the linear acceleration from the
data. Linear acceleration units are shown in m/s2 sim-
ilar to the accelerometer.
Gyroscope: the gyroscope measures the rate of rota-
tion in rad/s around a device’s x, y, and z axis. The
gyroscope is used to maintain and control the posi-
tion, level or orientation of the smartphone based on
the principle of angular momentum.
Rotation Sensor: the rotation (orientation) sensor
measures the change of direction of the smartphone
along three dimensions: x-axis (Azimuth), y-axis
(Pitch), and z-axis (Roll) (Xu et al., 2012).

2.2 Inferences Derived from
Smartphone Sensor Data

Mobile devices which are often equipped with sen-
sors such as the accelerometer, gyroscope, rotation
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sensor, camera, microphone, GPS and so on, are be-
ing used by mobile sensing systems to make sophis-
ticated inferences about users. These inferences have
enabled an entire ecosystem of context-aware appli-
cations such as traffic and environmental monitor-
ing (Azizyan et al., 2009; Templeman et al., 2013;
Mohan et al., 2008; Tung and Shin, 2015), behavior-
based user authentication (Lee and Lee, 2017; Frank
et al., 2013; Mare et al., 2014; Zhu et al., 2013; Lee
et al., 2017; Riva et al., 2012; Conti et al., 2011), ac-
tivity mode detection (Reddy et al., 2010; Bao and
Intille, 2004; Luxton et al., 2011), and speech transla-
tion (Michalevsky et al., 2014; Lei et al., 2013).

While the smartphone sensory data has enabled
context-aware applications, the same data can also
be used by an adversary to make inferences about
the private information of the users. Therefore,
there exist fundamentally conflicting requirements
between protecting privacy of users’ sensitive infor-
mation recorded by smartphone sensors and preserv-
ing utility of the same data for authorized context-
aware applications. These private inferences include
the identification of emotional state (Chang et al.,
2011; Rachuri et al., 2010), speaker identity recog-
nition (Nirjon et al., 2013; Liu et al., 2012), location
tracking (Han et al., 2012; Brouwers and Woehrle,
2011; Nirjon et al., 2013; Kim et al., 2010), on-
screen taps recognition (Miluzzo et al., 2012), onset
of stress (Lu et al., 2012; Chang et al., 2011) and
keystroke detection (Miluzzo et al., 2012; Xu et al.,
2012; Liu et al., 2015; Marquardt et al., 2011; Owusu
et al., 2012; Cai and Chen, 2011). Furthermore, many
applications have access to data recorded by the mo-
tion sensors that do not require users’ permissions,
combinations of which can be maliciously used to
predict more private information than what the appli-
cations advertise.

3 ATTACK OVERVIEW

3.1 Attack Goals

The objective of our attack is to infer the users’ hand-
written patterns by exploiting the motion sensors em-
bedded in the smartphones. Since these motion sen-
sors are usually considered as collecting insensitive
information, our attack does not require any user per-
mission to access the recordings of motion sensors
such as the accelerometer, linear accelerometer, gy-
roscope and rotation sensor.

3.2 Attack Workflow

We explain the workflow of our attack which works
under the training mode and the testing mode as fol-
low:

In the training mode, when the user is interact-
ing with the smartphone, we can record the handwrit-
ten characters entered on the touchscreen, and corre-
late these ground-truth information with the measure-
ments of motion sensors collected during the hand-
written events to generate the user’s interaction pat-
terns/templates.

In the testing mode, our attack keeps monitoring
the measurements of motion sensors. When the user
is performing sensitive inputs on the touchscreen, the
acquired interaction patterns/templates in the training
mode can be leveraged to infer the user’s handwrit-
ten characters based on the measurements of motion
sensors.

4 EXPERIMENTAL SETUP

Android Application Implementation: We develop
an Android application to implement our privacy at-
tack of inferring smartphone users’ handwritten pat-
terns. Specifically, we collect recordings from all
the motion sensors including the accelerometer, lin-
ear accelerometer, gyroscope, and rotation sensor in
a Google Nexus 5 (with 2.3GHz, Krait 400 proces-
sor, 16GB internal storage and 2GB RAM on Android
7.0 operating system), corresponding to the scenarios
where the user entered 26 characters from A to Z on
the touchscreen. The sampling frequency of our ap-
plication is set to 50 Hz.
Sensor Data Collection: In our experiments, we
collect sensor recordings of 10 users’ handwritten
events corresponding to the 26 characters, and we re-
peated this process for 10 times. Therefore, we collect
10×26×10 = 2600 time-series sensor recordings in
our data set. Furthermore, we use 10-fold cross vali-
dation in our experiments to generate the training and
testing data, i.e., 9/10 of our collected data is used as
training data and the remaining 1/10 is used as testing
data. We repeated this process for 1000 iterations and
reported the averaged results.

5 PROPOSED APPROACH

Our proposed inference attack is composed of two
key techniques. First, we propose to exploit the dy-
namic time warping (DTW) algorithm (Berndt and
Clifford, 1994) to quantify similarities between two
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time-series sensor recordings, in order to distinguish
users’ handwritten patterns (detailed process will be
discussed in Section 5.1). More specifically, under
the training mode, we construct the template sensor
recordings using DTW technique, by selecting the
most representative sensor measurement correspond-
ing to each handwritten pattern of the user. Under
the testing mode, we evaluate the similarity between
the incoming sensor signal and all the template sen-
sor recordings by using DTW algorithm, from which
we identify the closest template sensor recording and
label the incoming sensor signal accordingly for each
sensor dimension. Second, we develop a novel sen-
sor fusion mechanism to generate the final inference
result which integrates information contained in mul-
tiple motion sensors by leveraging the majority voting
strategy (Lam and Suen, 1997) (as will be discussed
in Section 5.2).

5.1 Evaluating Similarity of Sensor
Recordings by using DTW

DTW is a well-known technique (Berndt and
Clifford, 1994) to find the optimal alignment
between two given (time-dependent) sequences
xxx := (x1,x2, . . . ,xN) of length N ∈ N and yyy :=
(y1,y2, . . . ,yM) of length M ∈ N under certain restric-
tions. It has been successfully applied to compare
different speech patterns in automatic speech recog-
nition and other applications in the data mining com-
munity. While there is a surfeit of possible distance
measures for time-series data, empirical evidence has
shown that DTW is exceptionally difficult to beat.
Ding et al. in (Ding et al., 2008) tested the most
cited distance measures on 47 different data sets, and
no method consistently outperforms DTW. Therefore,
we aim to exploit the DTW technique to carefully
measure the distance between any pair of time-series
sensor recordings which may vary in time or speed.

DTW calculates the distance of two sequences us-
ing dynamic programming (Bertsekas, 1995), where
the sequences are warped in a nonlinear fashion to
match each other. It constructs an N-by-M matrix,
where the (i, j)-th element is the minimum distance
(called local distance) between the two sequences
that end at points xi and y j respectively. An (N,M)-
warping path p = (p1, p2, · · · , pL) is a contiguous set
of matrix elements which defines an alignment be-
tween two sequences xxx and yyy by aligning the element
xnl of xxx to the element yml of yyy. The boundary condi-
tion enforces that the first elements of xxx and yyy as well
as the last elements of xxx and yyy are aligned to each
other. The total distance dp(xxx,yyy) of a warping path
p between xxx and yyy with respect to the local distance

measure d is defined as

dp(xxx,yyy) =
L

∑
l=1

d(xnl ,yml ) (1)

Therefore, the DTW distance for two time-series
data can be computed as

DTW (xxx,yyy) = mindp(xxx,yyy) (2)

Constructing Template Sensor Recording:
Under the training mode of our attack, we
aim to construct the template sensor record-
ing corresponding to each character and sen-
sor dimension, i.e., tttcharacter, sensor, axis, where
character ∈ CCC = {A, . . .Z}, sensor ∈ SSS =
{accelerometer, linear accelerometer, gyroscope ,
rotation sensor} and axis ∈ AAA = {x, y, z}. Our
objective is to identify the most representative
sensor signal that is the closest to all the senor
recordings of the same character. Specifically,
for each character ∈ CCC, we compute the DTW
distance between any pair of sensor recordings in
RRRcharacter, sensor, axis = {rrrcharacter, sensor, axis} and select
as template the one that achieves the smallest DTW
distance, i.e.,

tttcharacter, sensor, axis

= argmin
rrr1∈RRRcharacter, sensor, axis

∑
rrr2∈RRRcharacter, sensor, axis

DTW (rrr1,rrr2)

(3)

Inferring Handwritten Pattern Corresponding to
Each Sensor Dimension: Under the testing mode
of our attack, we aim to infer the handwritten char-
acter corresponding to an incoming sensor recording
DDD = {dddsensor, axis}sensor∈SSS,axis∈AAA. Our inference attack
consists of two steps: 1) identify the input character
from data recorded by each sensor dimension; and 2)
infer the input character by integrating the informa-
tion contained in all the sensors. For the first step, we
can calculate the DTW distance Distcharacter, sensor, axis
between the input data dddsensor, axis and each template
sensor recording tttcharacter, sensor, axis, from which we
can identify the handwritten character corresponding
to each sensor dimension as

In f er(dddsensor, axis)

=argmin
character

Distcharacter, sensor, axis

=argmin
character

DTW (dddsensor, axis, tttcharacter, sensor, axis)

(4)

The second step of integrating the information
contained in multiple sensors is described as follows.
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5.2 Majority Voting based Sensor
Fusion Mechanism

In order to achieve enhanced inference performance,
we aim to exploit the majority voting strategy to inte-
grate information recorded by all the sensors. Ma-
jority voting is previously applied in the classifica-
tion domain (Lam and Suen, 1997), where it repre-
sents a mapping function that maps multiple classi-
fiers’ decisions into a single decision, i.e., it maps
Class×Class×·· ·×Class to Class, where Class =
{A ,B, . . .Z} in our setting. The benefit of using ma-
jority voting is that it can reduce the noise and bias
caused by a single classifier. Therefore, the deci-
sion made by majority voting is more robust and re-
liable. Specifically, assuming that we have m clas-
sifiers Class1,Class2, . . . ,Classm, the majority voting
function Ma jorityVote(·) can be described as

Class = Ma jorityVote(Class1,Class2, · · · ,Classm)
(5)

where Ma jorityVote(Class1,Class2, · · · ,Classm) re-
turns the most frequent result appearing within
Class1,Class2, · · · ,Classm.

With the knowledge of the inferred char-
acter corresponding to each sensor dimension
In f er(dddsensor, axis) in Eq. 4, we construct the set of
inferred characters for all the sensors as

LLLAAABBBEEELLL(DDD) = {In f er(dddsensor, axis)}sensor∈SSS, axis∈AAA
(6)

Then, we can infer the handwritten character cor-
responding to the incoming sensor recordings DDD =
{dddsensor, axis}sensor∈SSS, axis∈AAA as follows:

In f er(DDD)

=Ma jorityVote(LLLAAABBBEEELLL(DDD))

=T he Most Frequent Character in LLLAAABBBEEELLL(DDD)
(7)

Based on our analysis above, we therefore sum-
marize our attack in Algorithm 1.

6 EVALUATION

6.1 Evaluation Metrics

In our experiments, we quantify the performance of
our attack by using the metric of accuracy, which is
computed as the ratio of correctly-inferred characters.
More specifically, we can compute the accuracy of

Algorithm 1: Our Attack of Inferring Users’ Handwritten
Patterns by Using Motion Sensors.
Input : The input sensor signal DDD =

{dddsensor, axis}sensor∈SSS, axis∈AAA and
the template sensor recordings
{tttcharacter, sensor, axis}character∈CCC, sensor∈SSS, axis∈AAA,
where CCC = {A, . . .Z}, SSS = {accelerometer,
linear accelerometer,gyroscope,rotation
sensor} and AAA = {x, y, z};

Output: The detected character corresponding to the
input sensor data In f er(DDD);

Construct the set of inferred characters for all the sen-
sors LLLAAABBBEEELLL(DDD) as an empty set;
for sensor in SSS do

for axis in AAA do
for character in CCC do

According to Eq. 2, calculate the DTW
distance Distcharacter, sensor, axis between
dddsensor, axis and tttcharacter, sensor, axis;

end
Label the identified character for each sensor
dimension as

In f er(dddsensor, axis)

= argmincharacter Distcharacter, sensor, axis;

Update LLLAAABBBEEELLL(DDD) as

LLLAAABBBEEELLL(DDD)

= [LLLAAABBBEEELLL(DDD), In f er(dddsensor, axis)];

end
end
Label the detected character corresponding to DDD as

In f er(DDD) = Ma jorityVote(LLLAAABBBEEELLL(DDD))

=T he Most Frequent Character in LLLAAABBBEEELLL(DDD);

return In f er(DDD);

our attack by using measurement of each sensor di-
mension as

Accuracysensor,axis

=

∑
dddsensor, axis

I(In f er(dddsensor, axis) =Char(DDD))

∑
dddsensor, axis

1
(8)

where I(event) is the indicator function and
I(event) = 1 if event holds otherwise I(event) = 0.
Char(DDD) represents the ground-truth character that is
entered on the touchscreen corresponding to the in-
put sensor signal DDD. In f er(dddsensor, axis) is the inferred
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Figure 1: The visualization of handwritten signals extracted from the accelerometer, linear accelerometer, gyroscope and
rotation sensor under the three different dimensions. We randomly select two handwritten signals from the same character A
(red and blue lines) and a handwritten signal from another character B (green lines). We observe that the distance between
two handwritten signals corresponding to the same character is smaller than that from a different character, which lays the
foundation of our attack.

character by using data collected by each sensor di-
mension as shown in Eq. 4.

After applying the majority voting based sensor
fusion mechanism in Section 5.2, the overall accuracy
of our attack can be computed as

Accuracy

=

∑
dddsensor, axis,

sensor∈SSS,axis∈AAA

I(In f er(dddsensor, axis) =Char(DDD))

∑
dddsensor, axis,

sensor∈SSS,axis∈AAA

1

(9)
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Figure 2: The heatmap of DTW distance between sensor measurements corresponding to any pair of characters from A to Z
by using different dimensions of motion sensors (the accelerometer, linear accelerometer, gyroscope and rotation sensor). A
whiter color corresponds to a smaller DTW distance between two characters. We observe various distinguishing powers of
motion sensors in differentiating users’ handwritten patterns.

6.2 Effectiveness of Evaluating Sensor
Similarity by using DTW Distance

In our attack, we utilize the DTW distance as de-
scribed in Section 5.1 for evaluating the similarity be-
tween any pair of time-series sensor recordings. Fig-
ure 1 shows the distinguishing power of the motion
sensors (the accelerometer, linear accelerometer, gy-
roscope and rotation sensor) to differentiate users’
entered characters on the touchscreen. Specifically,
we randomly select two time-series sensor record-
ings corresponding to the same character and one sen-
sor recording corresponding to another character, and

then compute the distance between these signals after
implementing the DTW technique according to Eq. 2.
From Figure 1, we observe that the distance between
two sensor signals corresponding to the same charac-
ter is much smaller than that from a different charac-
ter, which lays the foundation for our attack. Figure 2
shows the heatmap of the DTW distance between sen-
sor measurements corresponding to any pair of char-
acters under each sensor dimension. From Figure 2,
we observe that different sensors have various powers
in matching the same character’s handwritten gestures
and distinguishing different characters’ handwritten
gestures, which demonstrates the empirical necessity
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of our proposed majority voting based sensor fusion
mechanism.

Table 1: Accuracy of Distinguishing Handwritten Patterns
by Using Different Sensor Dimensions.

X axis Y axis Z axis
Accelerometer 57.3% 54.6% 51.6%

Linear Accelerometer 49.9% 38.6% 48.4%
Gyroscope 75.1% 75.7% 51.6%

Rotation Sensor 35.0% 42.1% 30.6%

Table 1 shows the accuracy of inferring users’
handwritten patterns by using different sensor dimen-
sions according to Eq. 4. From Table 1, we know that
the accuracy achieved by different sensor dimension
varies from each other, and the gyroscope shows bet-
ter distinguishing power than the other sensors. The
reason is that a user’s handwritten movement is dom-
inated by the rate of rotation recorded by the gyro-
scope while the translation movement that is relevant
to the accelerometer is less significant. We also ob-
serve that using the rotation sensor achieves much
lower accuracy than the other sensors. The reason is
that the absolute rotation values recorded by the rota-
tion sensor is too sensitive to the handwritten move-
ments, making it difficult for effective inference at-
tack. This observation also provides a guide for us to
explore the combination of the accelerometer, linear
acclerometer and gyroscope in the practical deploy-
ment of our attack.

6.3 Effectiveness of Majority Voting
based Sensor Fusion Mechanism

After applying the majority voting based sensor fu-
sion mechanism as described in Section 5.2, our at-
tack can achieve up to 91.4% accuracy through in-
tegrating information recorded by the accelerometer,
linear accelerometer and gyroscope, which is much
higher than using each sensor independently (recall
Table 1). It is also interesting to know that the over-
all accuracy achieved by combining these three sen-
sors and the rotation sensor is only 89.2%. This ob-
servation not only shows that utilizing more sensors
does not necessarily result in better inference perfor-
mance, but also demonstrates the effectiveness of only
using the three sensors of the accelerometer, linear ac-
celerometer and gyroscope in the practical attacks of
inferring users’ handwritten patterns.

7 DISCUSSION AND FUTURE
DIRECTION

7.1 Handwritten Pattern Inferences
using Motion Sensors is Practical

Our experimental results in Section 6 demonstrate the
feasibility of inferring users’ handwritten patterns by
exploiting innocuous motion sensors. More specifi-
cally, by integrating the information recorded by the
acclerometer, linear accelerometer and gyroscope, we
can accurately infer users’ handwritten patterns with
up to 91.4% accuracy, whose performance is signifi-
cantly better than using a single sensor or integrating
these three sensors with the rotation sensor. This ob-
servation can serve as an effective guide for the design
of practical attacks on users’ handwritten patterns.

In this paper, we infer user’s secret input inde-
pendently (character by character). However, in real-
ity, the input sequence may be correlated with each
other for meaningful presentation (e.g., users’ text
message). Therefore, exploiting the correlation in-
herently existing between contiguous gestures to infer
more secret information will be an interesting future
direction.

7.2 Potential Countermeasurements

Our proposed inference attack demonstrates the fun-
damentally conflicting requirements between protect-
ing privacy of users’ sensitive information contained
in smartphone sensors and preserving utility of the
same data for authorized usage. Several sensor pri-
vacy protection mechanisms have been proposed in
the literature (Beresford et al., 2011; Hornyack et al.,
2011; Cornelius et al., 2008; Shebaro et al., 2014; Li
and Cao, 2013) which, however, are often heuristic in
nature and fail to provide rigorous privacy guarantees.

To overcome the limitations existing in previ-
ous sensor privacy protection mechanisms, potential
countermeasurements for our inference attack include
the differential privacy framework (Dwork, 2006)
and its generalized variations (Kifer and Machanava-
jjhala, 2014; ?), which can be leveraged to pro-
vide rigorous access control over smartphone sen-
sors. Note that applying these privacy-preserving
mechanisms often require the modification of smart-
phone operating systems which usually incur signifi-
cant CPU/memory overhead and battery cost.
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8 CONCLUSION

While the third-party applications relying on mobile
sensors are becoming increasingly popular, the secu-
rity and privacy issues related to these applications
are not well understood yet. In this paper, we study
the feasibility of inferring user’s handwritten patterns
on smartphone touchscreen by utilizing data collected
by the motion sensors. In our method, we exploit
the DTW technique to measure the similarity between
any pair of time-series sensor data, aiming at dis-
tinguishing the user’s different inputs on the touch-
screen. For achieving enhanced inference accuracy,
we propose a novel majority voting based sensor fu-
sion mechanism through integrating information con-
tained in multiple motion sensors. We present the
design and implementation of our attack in an ap-
plication that explores the measurements of motion
sensors to stealthily infer the user’s private inputs on
the touchscreen. Extensive experiments using real-
world data sets demonstrate the effectiveness of our
attack which can achieve 91.4% accuracy for infer-
ring users’ handwritten patterns.
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