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Abstract: This paper describes a prototype for the localization of pedestrians carrying a video camera. The application
envisioned here is to analyze the trajectories of blind people going across long crosswalks when following an
accessible pedestrian signal (APS), in the context of signal optimization. Instead of relying on an observer
for manually logging the subjects’ position at regular time intervals with respect to the crosswalk, we propose
to equip the subjects with a wearable camera: a visual odometry algorithm then recovers the trajectory and
spatial analysis can then determine to which extent the subject remained within reasonable boundaries while
performing the crossing. Preliminary tests in conditions similar to a street crossing show that our results
qualitatively agree with the physical behavior of the subject.

1 INTRODUCTION

The accurate 2D localization of deformable objects
such as pedestrians without a top-down view or a pla-
nar scene assumption is a challenging task. In an un-
constrained setting where other objects might be si-
multaneously moving around a target of interest, and
where static visual references are few, most classic
vision-based solutions are prone to failure. In this
work, we propose an early prototype to measure the
trajectory of blind subjects crossing a street intersec-
tion with the aid of various accessible pedestrian sig-
nals (APS). Our goal is to determine which signals are
more adequate in terms of pitch, melody, etc. in guid-
ing a blind person to align themselves with the cross-
walk, and to remain within its boundaries throughout
the crossing. For this, we measure each subject’s de-
viation with respect to the center of the crosswalk,
varying the signal used in each experiment. Bet-
ter signals should, on average, minimize such devi-
ations. Previous data collection protocols usually re-
quired researchers to visually estimate the deviations
as the person walks in front of them, which is obvi-
ously inaccurate and labor-intensive (Laroche et al.,
2000). Since hundreds of crossings may also be re-
quired for the proper statistical analysis of deviations
in our problem, this approach is unsuitable. On the
other hand, hardware-based localization solutions are

not always adequate due to the spatial accuracy re-
quired for proper analysis (≈15 cm); for example, the
accuracy of consumer GPS devices is a few meters
in good conditions. Furthermore, the equipment used
should not disturb the subjects’ progress during cross-
ing, and measurements should be done inside a fairly
large volume since the intersection that is selected for
the experiment is a six-lane boulevard with a median
(total walking distance is 30m).

Recent advances in robot vision, most notably
in Simultaneous Localization and Mapping (SLAM)
techniques, may provide an elegant solution to our
problem: if the subject is wearing a camera while
performing the crossing, the tracking of the camera
pose would allow the recovery of the 3D trajectory of
the subject, hence its deviation with respect to some
reference points. This paper is organized as follows:
first, Section 2 describes a previous approach to the
problem and also provides some background informa-
tion about visual odometry; in Section 3, the proposed
strategy is exposed; and finally, in Section 4 we report
on some preliminary results gathered during a short
experiment.
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2 BACKGROUND WORK

A vision-based approach to this problem has been
proposed in the past (Lalonde et al., 2015). It relied
on the post-experiment analysis of video footage cap-
tured using a handheld camera to determine the sub-
ject’s movement from an offset point of view. The
subject’s feet were localized with respect to known
landmarks (markings painted on the ground) for spa-
tial referencing. Such an approach is convenient in
terms of data acquisition: an observer merely needs
to walk behind the subject with a camcorder, video
acquisition and management is easy, resolution is al-
ways good, etc. However, many challenges made the
analysis phase difficult, most notably the large vari-
ations in illumination and ensuing cast shadows, as
well as the lack of robustness of the feet tracking al-
gorithm. In addition, the method was dependent on
the presence of several lines painted on the pavement,
and their location had to be precisely known a priori.

In this paper, we tackle the movement mapping
problem using a vision-based simultaneous localiza-
tion and mapping (SLAM) approach. The idea be-
hind this kind of approach is to use visual data to con-
currently build a model of the local environment (i.e.
a “map”) and estimate the state (or location) of the
camera within it. In our case, the map of the envi-
ronment is not our primary focus, as our specific ap-
plication only relies on odometry, and loop closure is
not needed (i.e. we analyze one-way street crossings).
Nonetheless, environment maps can be used to correct
scaling issues found in monocular camera setups (as
discussed further in Section 3).

SLAM methods can be separated into direct
and indirect approaches. Indirect SLAM methods
such as ORB-SLAM (Mur-Artal et al., 2015) and
PTAM (Klein and Murray, 2007) typically use key-
point detectors to extract unique landmarks from the
observed images, and then estimate scene geometry
and camera extrinsics using a probabilistic model.
This classic approach is quite efficient in practice due
to the sparse nature of visual keypoints, and it is quite
robust to noise in geometric observations. However,
these keypoint-based methods fail when the observed
images are composed mostly of uniformly-textured
regions. Direct SLAM methods such as DSO (Engel
et al., 2017) and LSD-SLAM (Engel et al., 2014) rely
on local image intensities instead of sparse keypoints
to represent observations in their model. The advan-
tage of this approach is that it can use and reconstruct
any observed surface with an intensity gradient. This
is a crucial requirement for our application, as most
street crosswalk surfaces show repetitive landmarks
and high-frequency or uniform textures, which would

hinder the performance of an indirect SLAM method.
Besides, note that self-localization using only a cam-
era has been studied extensively before, but mostly
for robots or vehicles in large scale contexts (Se et al.,
2002; Pink et al., 2009; Brubaker et al., 2016). In our
case, a person’s gait directly affects the stability and
height of the camera, which can in turn hinder the per-
formance of traditional localization methods based on
landmarks or holonomic constraints.

For a more complete look at various SLAM
methodologies and algorithms, we refer the reader to
the recent survey of (Cadena et al., 2016).

3 STRATEGY

In this work, we take advantage of the recent devel-
opments in robot vision and SLAM, and explore the
use of visual odometry techniques to localize a per-
son during a street crossing. So, instead of having
someone hold the camera behind the subject and try
to track both the subject and the environment (using
e.g. added markers on the ground for proper localiza-
tion), we equip the subject with a calibrated camera
facing the street. Localizing the subject then amounts
to tracking the camera pose throughout the crossing.

As noted before, SLAM using a single camera
setup (i.e. a monocular setup) entails that the abso-
lute scale of the environment is unknown — this is
a problem for us, as deviations need to be recorded
and registered in a fixed coordinate system. Some
SLAM extensions rely on GPS, IMUs, or altime-
ters to correct this issue via sensor fusion using Ex-
tended Kalman Filters (Lynen et al., 2013). Others
instead rely on assumptions about the camera height
above the ground plane (Song et al., 2016), or about
its movement in very constrained settings (Gutiérrez-
Gómez et al., 2012; Scaramuzza et al., 2009). In
our case, we obtain camera trajectories using the Di-
rect Sparse Optimization (DSO) method (Engel et al.,
2017), and then fix this scaling issue by solving a
camera Perspective-n-Point (PnP) problem using cal-
ibration boards placed around the crosswalk. Since
we know the exact dimensions and grid layouts of
these boards, we can determine their orientation and
distance to the camera in specific key frames of the
analyzed video sequences using the OpenCV calibra-
tion toolbox. These distances can then be averaged
and used to properly scale the “map” provided by the
SLAM algorithm. Furthermore, by fixing a calibra-
tion board directly on the ground, a coordinate space
reference can be created, meaning all experiments can
be registered to the same coordinate system. Finally,
note that we could also use the length of the crosswalk
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Figure 1: Block diagram of the approach.

(which is known a priori) to roughly validate the scale
determined by solving the PnP problem. The strategy
is depicted in Fig. 1.

4 RESULTS AND DISCUSSION

4.1 Experimental Results

Our preliminary experiments were conducted in a
15m x 5m zone of an outdoor parking lot, so as to
simulate a street intersection (reduced by a scale of
1/2). The experimental setting is depicted in Fig. 2.
We laid white tape on the pavement so as to form
a 2m-wide corridor. A single subject was outfitted
with a chest mount body harness equipped with a
Hero3+ GoPro. The subject then simulated multiple
crossings inside the corridor while carrying the Go-
Pro, with varying trajectories with respect to the cen-
terline of the corridor. The GoPro camera was ori-
ented in portrait mode and slightly tilted toward the
ground, so that both the horizon (including neighbor-
ing buildings, parked cars, street furniture, etc.) and
the ground (pavement, line markings, etc.) were visi-
ble in the video frames. One key advantage with this
camera configuration is the possibility of adding land-
marks such as chessboard patterns on the ground, vis-
ible at the beginning as well as the end of the simula-
tion. This allows the computation of the exact camera
pose (3D position and orientation) at those moments,
which corresponds to the initial/final absolute anchor
points for the (relative) VO-computed trajectory, as

mentioned in Section 3.
An example of a simulated crossing is given in

Fig. 3, where we present some video frames as well as
the top view of the 3D trajectory provided by DSO1.
This top view representation is in line with the actual
path followed by the subject: the starting point is in
the middle of the corridor, there is a drift towards the
right up to the edge of the corridor (roughly at mid
point during displacement), and then a realignment
towards the center.

4.2 Discussion

Overall, video sequences of nine crossings were col-
lected. It however should be pointed out that only
seven of them have been processed successfully by
DSO: for the other sequences, the algorithm either
lost track of the camera position mid-crossing, or it
was unable to go beyond the initialization stage due
to strong orientation variations in early frames. In
that regard, an observation can be made about ini-
tialization. It seems that the first frames of the video
sequence greatly influence DSO’s behavior: if visual
odometry starts as the person wearing the camera is
already in motion, the initial estimate for the camera
pose may be irreversibly biased, without any possi-
bility of recovery. We hypothesize that the cause is
due to the oscillatory nature of a person’s walking
pattern which induces an undesirable orientation of

1The implementation used in this work has
been made available by (Engel et al., 2017) at
https://github.com/JakobEngel/dso
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Figure 2: Sketch of the experimental crosswalk setup.

Figure 3: Rendering of a trajectory. Top: video frames at 0s, 9s, 10s and 12s of the 16s video clip. Bottom: top view of the
recovered trajectory. The strong deviation in the middle of the sequence is clearly visible.
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Figure 4: Additional results for seven crossings. Trajectories are shown in red, and the pair of blue lines represents the
15m-long crosswalk.

the camera pose from which the algorithm cannot re-
cover. This observation underlines the importance of
carefully designing the experimental protocol when
subjects will be involved in a real setting.

Another observation is about the high number
of feature points that DSO can track as the camera
moves. As opposed to many competing methods,
DSO does not search for visual keypoints, but in-
stead splits each video frame into blocks and retains a
number of candidate points with high image gradients
in each block. The strategy makes sure that points
are well distributed throughout the frame, and even
across frames. Block size and gradient threshold are
also dynamically set to ensure that the pool of can-
didate points is sufficiently rich for the camera pose
estimate. Consequently, this strategy enables DSO
to perform well in the current context, even though
a weakly textured surface (pavement) occupies a sig-
nificant portion of the image. Other methods such as
ORB-SLAM would have failed to provide any reason-
able odometry results in a similar context.

The accuracy of the odometry can be assessed us-
ing two sequences where the subject was asked to
walk in the center of the corridor (see Fig. 4). Con-
sidering that both trajectories are about 10% off the
corridor centerline (20cm on the left-hand side) and
that the camera held by the subject was 8cm off the

body centerline (on the left-hand side as well) for me-
chanical reasons, a rough evaluation gives an error of
about 12cm for these two sequences. These encourag-
ing results justify the planning of a formal evaluation
involving blind persons in a real street intersection,
which will allow us to collect more accurate perfor-
mance measures. It will be interesting to evaluate the
stability of visual odometry in the presence of cast
shadows and moving objects such as pedestrians, bi-
cycles, etc.

5 CONCLUSION

This paper reported on preliminary tests involving vi-
sual odometry for localizing people in a street cross-
walk. Our objective is to measure the ability of a blind
person to engage in a crossing and stay on course
by listening to the accessible pedestrian signal. Pre-
liminary tests have shown that analyzing the video
footage from a wearable camera attached to a person
provides enough information to locate them in a street
crosswalk via camera pose estimation. Although the
focus of the paper is 3D positioning, visual odometry
may also allow for the monitoring of the orientation
of the person with respect to the crosswalk, for exam-
ple capturing hesitations as the crossing progresses.
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For our live tests, the use of a wearable Inertial Mea-
surement Unit (IMU) may be considered to further
improve the accuracy of the odometry algorithm dur-
ing post-processing.
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