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Abstract: The task of carrying out an effective and efficient decision on medical domain is a complex one, since a lot 
of uncertainty and vagueness is involved. Fuzzy logic and probabilistic methods for handling uncertain and 
imprecise data both provide an advance towards the goal of constructing an intelligent decision support 
system (DSS) for medical diagnosis and therapy. This work reports on a successfully developed DSS 
concerning pneumonia disease. A detailed and clear description of the reasoning behind the core decision 
making module of the DSS, is included, depicting the proposed methodological issues. The results have 
shown that the suggested methodology for constructing bayesian networks (BNs) from fuzzy rules gives a 
front-end decision about the severity of pulmonary infections, providing similar results to those obtained 
with physicians’ intuition. 

1 INTRODUCTION 

Many techniques in the field of artificial intelligence 
have been used to represent knowledge: production 
rules, semantic nets, Bayesian nets, frameworks, 
scripts, statements, logic, causal networks, among 
others. Two significant topics of artificial 
intelligence are fuzzy logic and bayesian probability 
networks (Berner, 2007), (Konar and Chakraborty, 
2005), (Konar, 2001). They have been shown to be 
effective in the medical decision tasks (Pearl, 2005), 
(Adlassnig, 1998), (Steimann and Adlassnig, 2000), 
(Chen et al. 2005), (Sittig et al., 2008), (Hudson, 
2006), (Fox et al., 2010), (Charitos et al., 2009), 
(Fine et al. 1997). The choice of one of these two 
techniques is based on two main factors: the nature 
of the application and the designer’s skills. Both 
decision making methods have been used in many 
applications in medicine. 

In the last decade, probabilistic reasoning and 
fuzzy logic based methodologies were utilized in 
handling imprecise data in pulmonary infections 
(Pereira and Escuder, 1998), (Schurink et al., 2005), 
(Aronsky and Haug, 1999), (Hoare and Lim, 2006), 
(Saraoğlu and Sanli, 2007), (Cooper et al., 2005). 

In this work, a useful step by step presentation of 
the design of an implemented DSS and its reasoning 
is given. It concerns pulmonary infections and a 

decision making concerning the severity of the 
disease (Zarikas et al., 2015). Physicians (stand as 
medical experts) reported certain and uncertain 
scientific knowledge concerning the disease of 
pneumonia (Mani, 2000). The physicians expressed 
their knowledge in the form of if-then rules. The 
designer of the network in cooperation with the 
experts/physicians assigned linguistic fuzzy values 
to describe the probability between the observables 
and the decision. Then these linguistic values were 
transferred to numerical values using defuzzification 
process in order to fill the conditional probability 
tables. Finally, the system forecasts the severity of 
pneumonia and drive a decision concerning their 
admission in Internal Care Unit (ICU). The 
simulations for test patients performed using the 
implementation of the proposed methodology.  

The main objective of this paper is to introduce, 
analyze, and illustrate in a pedagogical way the 
methodology that have already been described 
mathematically in (Zarikas et al., 2015). Many 
researchers contacted us and required a more 
detailed description of the reasoning behind the 
formulas appeared in (Zarikas et al., 2015). Because 
of the relative novel character of the application in 
the field of medical sciences, this paper gives a 
detailed explanation on the proposed methodology 
and the application preview the effectiveness of the 
method.  
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The paper is organized into the following 
sections: the second section presents a description on 
Bayesian networks and influence diagrams. It also 
provides a description on how fuzzy rules assigned 
by medical doctors, are used to construct conditional 
probability tables. The third section presents a 
statement of the problem and how the BNs for the 
specific problem is constructed by fuzzy rules 
introduction. The fourth section provides a 
description on stages of the development of the 
correct topology used in the BN tool, presenting the 
inference approach too. The fifth section outlines the 
results and the main conclusions of the study. 

2 BAYESIAN NETWORKS AND 
FUZZY RULES 

The definition of a consistent mathematical 
framework that allows the integration of certain and 
uncertain pieces of information into a plan of 
reasoning, would provide a necessary knowledge 
representation platform for every domain expert. 
Such a model of knowledge representation already 
exists and is known as belief network or Bayesian 
Network (BN) or causal graph (Jensen, 2000), 
(Pearl, 1988), (Stutz an Cheeseman, 1994), 
(Friedman and Goldszmidt, 1998), (Heckerman and 
Geiger, 1994). 

Designing a Bayesian network means the 
following tasks (i) define arcs from cause variables 
to their effects; causal relationships reveal the 
conditional dependencies and independencies, (ii) 
assign values in Conditional Probability Tables 
(CPT) based on prior knowledge and data, (iii) 
finally appropriate algorithms have to been 
employed (Pearl, 1986), (Pearl, 1987), (Pearl and 
Verma, 1987) to determine various probabilities 
from the network. 

The synthesis of Utility theory and Bayesian 
graph theory formulates the Decision theory 
(Winkler and Robert, 1972), (Horvitz, 1988), 
(Morgan and Bruce, 1968). The decision system that 
is described in the present work follows the usual 
assumptions. First we work with a set of mutual 
exclusive actions and non-intervening actions i,e, 
actions that their state is not correlated with P(H), 
where H is the determining variable that affects the 
decision. The expressive power of BNs becomes 
obvious considering that they can encapsulate 
statistical results, probability distributions, certain or 
uncertain opinions, utilities, preferences, strategies, 
goals and actions. 

The fuzzy logic is based on fuzzy if-then rules 
which have the general form “IF X is A THEN Y is 
B,” where A and B are fuzzy sets. A fuzzy set is a 
set containing elements that have varying degrees of 
membership in the set. Elements in a fuzzy set, 
because their membership need not be complete, can 
also be members of other fuzzy set on the same 
universe. 

The physicians express their knowledge in the 
form of fuzzy if-then rules due to the human 
thinking approach. The experts accompanied with 
the physicians assign linguistic fuzzy values 
produced by each IF-THEN rule, to describe the 
probability between the decision and the 
observables. These linguistic values, through the 
defuzzification approach of fuzzy logic, are 
transferred to numerical values in order to fill the 
conditional probability tables.  

In order to show how the probability tables for 
BNs are developed using the above type of if-then 
rules, a generic approach is provided. Let’s consider 
the following rule for the assessment of risk or 
severity of an infection X: “IF symptom/observable-
A increases Then severity of infection X decreases” 
(rule 1). This rule suggests information capable to 
provide probabilities for the conditional probability 
table (CPT) between the severity of infection and the 
observable A.  

The above rule is translated as: there is a 
negative effect on severity from symptom A. This 
means that the lower state of severity conditioned on 
the higher state of symptom has a very very large 
probability. In the simple case that both 
``symptom/observable A” and ``severity of 
infection/decision X” have only two states CPT 
assignment is shown in Table 1. The inference of the 
rule 1 could be described as:Rule Infer: The 
probability P(severity-|A+)=very very high. The 
linguistic description "very very high" might be 
assigned with a fuzzy set with corresponding 
membership functions. 

Table 1: CPT of symbol A. 

Symptom A 
Severity X + -
+ complement 0.5
- v.v. high 0.5

 

The membership functions that constitute the 
fuzzy sets which describe the inference of the fuzzy 
rules are depicted in Figure1. This means that from 
rule 1, there is a fuzzy belief which is assigned by 
the fuzzy set shown in Fig. 1. After defuzzification 
with the Center of Area method, a numerical value 
of each fuzzy set is produced. The produced 
numerical value is used to fill the probabilities in 
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CPT (Zarikas et al., 2015).  
Therefore, we attempt to fill up the CPT for the 

different states of A and severity of infection X 
using this reasoning. In this point it worth stressing 
that experts together with the physicians assign the 
fuzzy values to describe the probabilities in CPT 
between the decision and symptoms. First, they 
extract the correct inference of the rule 1 i.e. that the 
probability P(severity-|A+) is "very very high". 
Second, the "very very high" probability is 
transferred to the numerical value of 0.9, according 
to the defuzzification process of the related fuzzy 
sets. If there is no information for the effect on 
severity X in the case that A decreases then neutral 
policy is followed. This means that a probability of 
0.5 for both ‘+’ and ‘–’ states of a variable is 
assigned. This means that we assign probabilities 
following neutral policy. Thus, Table 2 changes to 
Table 3. 

Table 2: CPT-probability (severity (X|A)). 

 Symptom A 
Severity X + - 

+ 0.1 0.5
- 0.9 0.5

 
Let's consider the “opposite” case of a rule in the 

form: If symptom/observable A decreases Then the 
severity of infection X increases. Now the Infer of 
the rule is:   

Probability P(severity+|A-)=v.very high and the 
CPT table is completed in an analogous way 
resulting to probability P(severity+|A-)=0.9. It is 
obvious that A is in general a different symptom 
than the one mentioned before in Tables 1, 2. 

There are also cases that the number of states of 
the severity of a disease is more than two. In what 
follows, an explanation of how it is possible to 
construct CPTs for such multistate variables based 
on fuzzy rules is given. Let us work with the rule 1, 
“If severity A increases then severity of infection X 
decreases”. Assuming that the symptom/observable 
A is described by three states: {weak, moderate, 
strong} and the severity or risk of infection X has 
four states: {small, medium, high and very high}, 
then for the CPT it is needed to assign values for: 
P(very small severity|A weak), P(very small 
severity|A strong), P(very small severity|A 
moderate), P(small severity|A weak), P(small 
severity|A strong ), P(small severity|A 
moderate),....etc.  

These probabilities are proposed to be described 
by eight (8) membership functions for 

P(severity_state i |A moderate) and 

P(severity_state i |A strong ) borrowed from fuzzy 

logic methodology. Finally all P(severity_State i |A 

weak) are equal to 1/4 due to neutral assignment 
policy. These membership functions have been 
defined by the related fuzzy sets as illustrated in 
Figure 1. 

 

 

Figure 1: Membership functions used. 

Thus the probability to decrease severity X as A 
increases could be assigned in a numerical value 0.7 
derived by fuzzy sets as presented in membership 
functions describing the “high” probability. The 
following CPT for the different states of A and 
severity X is needed to fill up Table 3 considering 
the above fuzzy sets and their ranges. 

Table 3: Probability (severity (X|A)) for multistate 
example. 

Symptom-A(state) 
Severity X Weak Moderate Strong 

small - medium high 0.6 High 0.7

med - 
weak  
0.3 

very weak 
0.2

high - very weak    0.2 v.v.weak 0.1
very high - 0 0

 

Next, Table 4 is filled up respecting axioms of 
bayesian probabilistic theory. Furthermore, neutral 
policy was also applied for the entries we have no 
information coming from the rule. It is worth 
mentioning that if a companion rule of the form “If 
symptom/observable A decreases Then the severity 
of infection X increases” then it would be possible to 
fill all the entries of the CPT. 

Table 4: Probability (severity (X|A)) for multistate 
example. 

Symptom A 
Severity-X Weak moderate strong

Small 0.25 0.55 0.7
Med 0.25 0.3 0.2
High 0.25 0.15 0.1

Very high 0.25 0 0
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Let us now consider another type of medical rule 
with two observables A and B to determine the 
severity of an infection X. The severity of the 
infection X is considered to have four states: {small, 
medium, large, v.large}. The physician assigns next 
rule to determine severity: 

``IF observable A is "Yes" and observable B 
decreases THEN severity of infection is medium”. 
This rule could be infer the probabilities: 

P(Severity med|low, Yes)=v.high (equals to 0.8) 

P(Severity med|moderate, Yes)=high (equals to 0.7). 

The CPT for the different states of observables A 
and B and severity of infection X is filled up as in 
Table 5. 

Table 5: CPT-Probability (severity |AB,BA). 

 (A)NO (A)YES (exist) 

 
(B) 
low 

(B) 
mod 

(B) 
high 

(B) 
low 

(B) 
mod 

(B)  
high 

Small       

Medium    0.8 0.7  

Large       
v. large       

 

Next step is to normalise the columns (A)YES-
(B)low and (A)YES-(B)mod and finally complete all 
the other collumns following neutral policy. Thus, 
Table 6 (CPT-completed filled-
Probability(Severity|B,A)) is derived. 

Table 6: CPT-completed Probability (severity |B,A). 

 Observable A 
Severity NO YES (exist)

 low mod high low mod high
Small 0.25 0.25 0.25 0.1 0.15 0.25
Medium 0.25 0.25 0.25 0.8 0.7 0.25
Large 0.25 0.25 0.25 0.1 0.15 0.25
v. large 0.25 0.25 0.25 0 0 0.25

3 PROBLEM AND TARGET 

Some common criticisms about applied Bayesian 
networks concern the necessity of filling correctly a 
lot of conditional probability tables. However, the 
involvement of all these probability tables, is the 
reason that makes this decision tool extremely 
precise, expressive and mathematically consistent. 
BNs indicate emphatically to any decision builder 
how many pieces of information are involved for a 
precise decision making. The required big set of 
probabilities by no means can be disregarded 
unwisely for the sake of simplicity or approximation 

or a fault decision will be driven. However, it is 
possible to find methods for filling in a correct way 
the missing pieces of information. The present work 
describes such a method for the problem under 
study. 

Another issue is that experts complain that the 
human brain does not work in this way and even 
scientists (not experienced in “Bayesian language”) 
cannot easily report safely all these numbers in order 
to describe a domain knowledge. A practical 
solution of this problem is presented in this work for 
a particular medical case. However, the selected 
medical decision problem is not a special one but a 
quite typical and general case. Experts report a list 
of rules containing estimates about probabilities. 
These rules are a subset of all the possible rules that 
the full problem would require and the reasoning 
and the justification behind this reduction is 
explained in the relevant sections below.  

For the chosen medical problem of pneumonia 
(pulmonary infections) the prediction of severity is a 
complicated process with many parameters, factors 
and preconditions (Gennis et al., 1989), (Langer 
1994). See also CDC Criteria for Defining 
Nosocomial Pneumonia, online available in http:// 
www.cdc.gov/. 

For the problem of pneumonia, a number of 
typical symptoms are associated. If pneumonia is 
suspected on the basis of a patient's symptoms and 
findings from physical examination this indicates 
that more tests are needed to confirm the diagnosis. 
The set of all these data provide a basis for 
evaluation the severity of infection and the need for 
intensive care (Schurink et al., 2005).  

Thus, severity of getting infected by pneumonia 
can be approximated by observing several 
symptoms. In the present work, three physicians 
(stated as experts), from the General Hospital of 
Lamia, Greece, were selected at first to define the 
number and type of symptoms-observables affecting 
the problem of pulmonary infection. Thirty-four 
different symptoms were reported, named from C1 
to C34. These symptoms listed in Table 7, are well 
documented in bibliography. These are the main 
variables that have an important role in the final 
diagnostic inference. For this application, 
symptom/observable values take either two, three, 
four or five possible discrete or fuzzy values, as 
shown in Table 8. Each one variable/observable has 
different states, for example C4 (fever) is separated 
into five fuzzy values: no fever (36-38.4C), low 
grade (38.5-38.9C), moderate, high grade, 
hyperpyrexia (>41^{0}).  

Next, the three physicians (expert doctors) were 
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interviewed in order to construct a certain list of 
rules containing estimates of the probability of 
infection. Such rules, defining which symptoms 
increase or decrease the risk of infection, can build 
the base for a Bayesian network. The target is to 
encode the medical expert's knowledge about 
pneumonia in a Bayesian network. The complete set 
of rules can be found in the published work (Zarikas 
et al., 2015) in Appendix, “Rules”. Rules have been 
given in the form of: 

If Cn {increases|decreases|exists}then the risk of 
infection is {small|medium|large|very_large} or 
{increases, decreases}, 

while for two or more symptoms in the following 
form: 

If Cn {increases|decreases|exists} and Cm 
{increases|decreases|exists}then the risk of infection 
is {small|medium|large|very_large}or {increases, 
decreases},  

where Cn and Cm are two different symptoms. 
Experts have also stated that most of the times 
doctors know evidence for one, two or three at most 
symptoms from an examined patient. 

Here it is worth pointing out that the proposed 
decision module is not a rule based expert 
subsystem. It is rather a probabilistic decision 
subsystem encoding medical “rules” expressing 
certain and uncertain knowledge. In order to design 
and implement the full Bayesian network with all 
the conditional probability tables a much larger set 
of rules is needed to cover them. However 
interviewing doctors, a medically correct strategy 
was constructed in order to fill the gaps in the 
probability tables.  

So far, we have only presented a general 
approach on how from the previously mentioned 
fuzzy rules, CPTs are constructed. In what follows, 
the proposed approach as well as the overall 
reasoning is explored and analyzed to the particular 
problem to accomplish the final decision. 

Table 7: Concepts coding pulmonary infections. 

Nodes 

C1: Dyspnea 
C17: Radiologic evidence of 
complicated pneumonia  

C2: Cough  C18: Acidity (pH) 
C3: Rigor/chills C19: Partial pressure of oxygen 
C4: Fever  C20: Partial pressure of CO2
C5: Loss of appetite  C21: Oxygen saturation O2%
C6: Debility C22: White blood cells (WBC) 
C7: Pleuritic pain C23: Immunocompromise
C8: Heamoptysis C24: Comorbidities 
C9:Oxygen 
requirement  

C25: Age 

C10: Tachypnea C26: Sputum culture 
C11:Acoustic C27: Bronchial secrets culture

character
C12:(Glascow Comma 
Scale)

C28: Blood culture 

C13:Systolic-Blood 
Pressure (mmHg)

C29:Pleural Fluid culture 

C14: Diastolic blooΙf C30: Mantoux 
C15:Tachycardia C31:Gram stain (gram (+)  
C16:Radiologic 
pneumonia

C32: Urinary antigen test  
C33: Pathogen Sensitivity 

4 DESIGNING THE BAYESIAN 
NETWORK 

In this section we describe how a Bayesian network 
is designed for the particular medical problem. We 
are going to create three types of nodes: 
• for every symptom a symptom node 
• for every rule or group of paired rules a rule node 
• for every rule node a severity utility node 
• one central utility comprising the overall utility 

and one decision node concerning admission to 
the ICU or not. 

4.1 Symptoms 

As a first step the symptoms should be entered in the 
BN, see Fig.2. In general, one symptom has different 
number of states according to physicians-expert 
knowledge and medical guidelines. Consequently, 
these states are associated with fuzzy membership 
functions, see Table 8 for examples. 

Every symptom is represented by a probability 
informational node called Cn with the symptom's 
states as possible values for the node. From now on, 
these nodes will be denoted as symptom nodes.  

The probability table of these nodes can be filled 
with certain or uncertain information (prior 
probabilities/evidences). Physicians report their 
knowledge by providing fuzzy rules based on their 
knowledge and guidelines from which our system  
extracts probabilities. This extraction is done 
following the method described in the section 3. 

Table 8: Examples for symptoms. 

Symptom Type of values (discrete or fuzzy) 
C7 Pleuritic 
pain

Two discrete values: 0, 1 

C4 Fever 

Six Fuzzy values (“hypothermia” (34-36), 
“no fever” (36-38.4), “low” (38.5-38.9), 
“moderate” (38.9-39.5), “high” (39.5-

40.9), “hyperpyrexia” (>41))
C23: Immuno Two fuzzy values (presence, absence)
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Figure 2: Symptom nodes. 

Values according to the results of patient's 
examinations or according to physicians's subjective 
appraisal are entered. In case that there is no 
evidence for one particular symtom statistical data 
that can provide frequencies may be used either for 
the group that the patient belongs to, or for the 
patient's historic profile. Thus, for a particular 
case/patient the probability table for the symptom 
C7 Pleuritic pain could look like this opposed in 
Table 9. 

Table 9: Probability table for the sympton C7 Pleuritic 
Plain. 

C7 Pleuritic pain Probability 
State0 0.3 
State1 0.7 

 

Thus, the value 0.7 for the probability of State1 
can arise from statistics about a high-risk group or 
from a doctor's judgment or patient’s examination, 
see Table 9. In case a physician detects no clarity or 
definiteness on the answer of a patient he can assign 
a probability less than unity. If there is no evidence 
about the prior probabilities of a symptom node then 
a neutral policy regarding the prior probabilities can 
be applied (assign equal probabilities for a multiple 
state symptom). In most cases, soon after the 
patient's visit to the medical center only a few 
symptoms can be reported or measured with a 
certain or uncertain degree of belief. For the rest of 
them that remain unspecified, either a neutral policy 
should be followed in order to assign prior 
probabilities or (as in our case) the setup of an 
algorithm which disregards from the whole BN all 
the child of the non-relevant symptom nodes is 
needed. 

4.2 Implementing the Rules 

Medical rules encode the necessary information with 
the help of which, it is possible to associate 
probabilistically disease’s severity and symptoms. 

Table 10: Conditional probability table of the risk of 
infection node as a direct children. 

Symptom 
1 

State 0 … 

Symptom 
2 

State 0 State 1 
State 

2 
.. .. 

Symptom 3
State 

0
State 

1
State 

2
… 

State 
0 

State 
1 

… .. . … 

. 

.
. 
.

. 

.
. 
.

.. .. .. . .. . … 

large 
severity

p1 p2 p3 … … … … .. . … 

small 
severity

1-p1 1-p2 1-p3 … … … … .. . … 

4.2.1 A First Topology 

Naively, since all symptoms causally influence the 
node severity, a connection of all symptom nodes to 
the central node representing severity is expected. 
However, this design results to an non solvable 
topology. It generates a quite large probability table. 
Furthermore, for adding a new rule, it would be 
required to modify the values for the previous 
entered rules! In summary, a CPT that represents 
more than two or three rules is not manageable.  

Table 10 illustrates clearly the complexity of the 
CPT in the simple case of a two-state severity node. 
The row large severity encapsulates the chances for 
large severity of infection, given the states of the 

column for the symptoms 1, 2( ,..., )mp p p , where 

N  is given by iN n with i=1,2,..k. where k is 

the number of symptoms and in  the number of 

states of symptom i . The row small severity 
contains the complementary probabilities. It is 
obvious that although one rule concerns only one or 
two symptoms the topology results to the fact that 
every rule affects all probabilities in the CPT. 
Nevertheless, this is the correct topology that ideally 
represents the modelling of knowledge for the 
disease and its set of symptoms. This clearly shows 
all the elementary pieces of knowledge involved. 
Thus, in some cases, where a set of rules encode 
critical information, it may be necessary to acquire 
the relevant knowledge and construct a part of this 
very detailed topology. 
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4.2.2 Tractable Topology 

A new simplified topology that works very 
efficiently is generated if for every rule a single rule 
node is assigned (see Figure 3). Fr this reason we 
name each rule node as sev-Cn or sev-Cn-Cm where 
n and m identify the symptoms involved in the rule. 
Rule nodes are causally affected by the symptom 
modes. In general, one or more symptoms affect one 
or more rules. Sometimes, it is preferable, two rules 
with the same symptoms to be combined in one rule 
node. Figure 3 shows the improved BN containing 
all symptoms and all rule nodes. Each rule node can 
be viewed now as a determining variable. 
 

 

Figure 3: Rule nodes. 

Although this is not a complicated topology 
many conditional probabilities have to be 
determined. Naively, one can say that the available 
rules provide less than the required amount of 
information. However, as we have previously 
explained physicians interpret and work with them 
in a way that allows to fill in the table. Let's explain 
the proposed method with one more example based 
on the following rule: “if symptom A is strongly in 
state1 (one of three states) then the severity of 
infection is large”. Apart from the obvious 
information that the conditional probability of large 
severity is a number close to unity conditioned on 
state 1, we can deduce more information. Following 
physicians' instructions, reported in the interviews, 
for some particular rules a complement (in our case 
small) probability for severity of infection can be 
assumed if the condition of the rule isn't satisfied. 

However, note that for most cases the negation 
of the first part of the rule is connected with no 
preference i.e. leads to neutral assignment of 
probabilities for risk states. Such cases have already 

been presented in the previous section. Now what 
about the other states; if the states of the symptom A 
comprise an ordinal scale (state "1" is smaller than 
state "2" and state "2" smaller than state "3") then in 
most cases, except if physicians state otherwise, it is 
allowed to understand that the rule remains less true 
for symptom in state “2” and not true for symptom 
in state “3”. 

Let's consider rule 30 and rule 31, see (Zarikas et 
al., 2015). These two rules can be represented by 
one combined rule node. When both these rules are 
not satisfied it means that they point to a not large 
severity. One can assign a conditional probability 
equal to 1 for C22 on state “normal” and on state 
“small” severity. Since the condition of the rule is 
not satisfied (C22 is neither in the higher state nor in 
the lower state) we assign 1 to the probability for a 
small risk independently of what is the state of C1. 
Alternatively another possible assignment is to set 
probability equal to one for P(severity|normal,state0) 
and P(risk|normal,state1) and a probability close to 1 
(for example 0.9) for the other two 
P(severity|normal,state2) and 
P(severity|normal,state3) since the latter are 
associated with states of increased C1-dyspnea. 
Table 11 presents a first realization of rule 30 and its 
companion rule 31: 

Table 11: Conditional probability table of the risk of 
infection node as a direct children. 

C22 leukopenia Normal Leukocytosis

C1 ... 
State 
0

State 
1

State
2 

State 
3 

... 

small ... 1 1 0.8 0.8 ... 
medium ... 0 0 0.15 0.15 ... 
large ... 0 0 0.05 0.05 ... 
very 
large

... 0 0 0 0 ... 

 

Note that if in Table 11 all entries in the first raw 
(small severity) are set to one while all entries in all 
other rows (medium, large, very large) are set to 
zero, no large modifications will be raised in the 
final provision of decisions. 

If C22 has the value leukocytosis means that C22 
have increased and therefore the condition of the 
rule 30 is satisfied, provided that C1 is increasing 
too, pointing to large severity. Linear interpolation 
provides values in between, for the row “large”, see 
Table 12. 

In case that C1 is in State1 or State2, 
P(medium|leukocytosis,1or2) is essential to be 
greater than 0. For example, it could be initially 
P(medium|leukocytosis,1or2)=0.3 and 
P(medium|leukocytosis,0or3)=0.  
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Table 12: First part of the probability table for rule C22-
C1. 

C22 Leukopenia Normal Leukocytosis 

C1 ... ... 
State 
0 

State 
1 

State
2 

State 
3 

small ... ... 0.7 0.5 0.2 0 

Medium ... ... - - - - 

large ... ... 0.2 0.5 0.8 1 

Very large ... ... - - - - 

 
Next, row “large” is kept the same while reduced 

values of probabilities are set to the CPT entries 
above and below a specific element of row “large”.  
Consequently, every column is normalized to a sum 
of 1 in each column. Therefore, following this 
reasoning, we retune values in Table 12, composing 
Table 13: 

Table 13: First part of the CPT for rule C22-C1. 

C22 Leukopenia Normal Leukocytosis 

C1 ... ... State 
0 

State 
1 

State
2 

State 
3 

small ... ... 0.5 0.1   0    0 

medium ... ... 0.15 0.2 0.1    0 

large ... ... 0.2 0.5 0.8 1 

Very 
large 

... ... 0.15 0.2 0.1 0 

 

Keeping the same reasoning (explained for 
leukocytosis), the column leukopenia can be 
determined by rule 31. The usage of all given riles 
resulted to the development of 102 rule nodes in the 
final decision network. 

4.2.3 Connecting the Rule Nodes 

After defining and setting all the rule nodes, the next 
step connects them with a utility node and through it 
to the final decision node. The Utility node can be 
modelled like Table14 and associates the decision 
node with the determining variable or variables. In 
this table a determining variable representing the 
total information which concerns the severity of the 
infection has been assumed. The decision node has 
been modeled with two states “Admission” meaning 
ICU admission and “No admission”. Table 14 
contains utility values for the four states of the 
determining variable. It will become apparent below 
that it is preferable to design more than one utility 
nodes (one utility for a group of similar determining 
variables). Now, determining variables are the so 

named rule nodes. 

Table 14: First part of the CPT for rule C22-C1. 

Determining 
variable of 

severity 
ICU admission 

no ICU 
admission 

low 0 1000
medium 330 660

large 660 330
very_large 1000 0 

 

The utility table is not a uniquely determined 
quantity. It reflects the strategy of the domain expert 
and thus different utility values can be set, 
depending on how conservative or strict is the 
selected policy.  Physicians, suggest that a larger 
certainty for one state of severity of infection should 
be given, if more rules point towards it. However, in 
some cases that evidence is given (updating the prior 
probabilities of certain symptoms for a patient) a 
discrepancy may arise. If one or more rules indicate 
a small risk, while other rules indicate a large risk 
the implemented software provides a warning signal.  
This build in check of all active rules enhance 
significantly the performance of our decision tool. 
Note, that active rules are the rules that have been 
activated by updating the prior probabilities of 
certain symptoms.  

4.2.4 Connecting All Rules 

It was explained why it is not a wise choice to 
connect all the 102 rule nodes to one central utility 
node. The central utility node contains a double-row 
table with utility weights expressing the strength of 
infection for the given states of the parent nodes 
(Table 15). Therefore, a column represents one 
combination of states of the parents’ nodes. Every 
rule node has four states small, medium, large and 
very large. So for every possible assignment of each 
of the 102 nodes with one of the 4 values, we need a 

utility table with 
1024  columns, which are too many 

for a decision system to deal with. 
However, for clarification reasons further 

elaboration on this topology with one utility will be 
devoted in order to illustrate the meaning of the 
entries of this utility table. The decision node ICU 
admission with the states yes and no allows defining 
utility values for these two states, see Figure 4 and 
Table 15. 

A problem that appears usually in medical 
diagnostic decision systems is the possibility the 
reported symptoms to lead to a serious discrepancy 
regarding the risk/severity of infection. It is always 
possible a patient to report mistakenly a symptom 
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that activate rule or rules that point to a very large 
risk/severity of infection while other symptom or 
symptoms point to small chance of infection. 
Therefore, a separate check for a discrepancy by an 
appropriate algorithm is necessary.  

A significant remark is that in realistic cases only 
few rules from the whole set are activated by the 
updated symptoms. This has an important 
consequence. All these rule nodes that have not been 
activated by updated symptoms, are associated with 
a parent symptom node with neutral set of 
probabilities. This finally drives the system towards 
a neutral decision. If most rules are not activated and 
only two or three rules indicate with 0.8 chance a 
large severity, the final result through the utility 
node would point to a medium level expected utility 
value in the scale of 0-1000. This fact provides 
difficulties for the system to drive a clear positive 
infection decision. However, this is also an issue that 
can easily resolve with the help of a special 
algorithm that excludes non-activated rules. 

The proposed solution includes an extra layer of 
utility nodes. Each rule node is connected to a utility 
node i-Cn-Cm which is named “admission node” 
(see figure 4). Thus, the role of the admission nodes 
is to convert the probabilistic representation of the 
severity of infection into a utility value as it can be 
seen in Table 15. 

The central utility (weighted severity for 
admission) is the chιld of all admission nodes (see 
figure 4). This final node combines the utilities on 
admission from all rules together. Technically the 
central utility node is expressed by a utility node of 
type MAU (Multiple Algorithm Utility). MAU, 
utility node integrates many utility nodes with the 
help of a mathematical expression depending on the 
values of their parent nodes. It uses typical functions 
such as sum, division, maximum/minimum and 
logical operations.  

Table 15: Theoretical Central Utility Table. 

Rule 1 small small ... small
Rule 2 small small ... large
... ... ... ... ...
Rule n small small ... medium
Infection positive negative ... positive
Value 50 950 ... 500

Rule 1 small ... 
Very 
large 

Very 
large

Rule 2 large ... 
Very 
large 

Very 
large

... ... ... ... ...

Rule n medium ... 
Very 
large 

Very 
large

Infection negative ... positive negative
Value 500 ... 1000 0

 

 
Figure 4: Inflection nodes (in blue). 

 
The decision tool was developed based on the 

code of Bayes Fusion, given for academic use This 
software provides a built-in maximum function for 
MAU nodes. The code cannot support an estimation 
of the maximum over all rule values if they are more 
than 20. One solution is to collect the infection 
nodes into small groups and then calculate the 
maximum of the maximums. Another way is to 
assign equal weight to utilitiy of each rule.  

In order to evaluate the severity of infection there 
is no need to take under consideration all the set of 
the rules. Since only a few symptoms are given for a 
particular patient, the rules that contain these 
symptoms will control the decision. Consequently, a 
few rules are often updated with non neutral prior 
probabilities which result in a noteworthy risk. 
However, as we have noticed the contribution of all 
the rest may affect considerably the final decision. 
This problem is resolved easier with the extra layer 
of utility nodes and the addition of a central node 
with a maximum MAU nodes evaluation scheme. 

As a last step it's necessary to ensure that there 
are no discrepancies otherwise a notification has to 
be provided. As mentioned earlier we expect every 
symptom to report more or less the same results. If a 
patient has a very large and a small value of severity 
at the same time, something went wrong. The tool 
have implement an algorithm which evaluates the 
differences of the minimum and the maximum of all 
risks given by the selected rules. If the difference is 
above a predefined threshold the user is notified 
about. 

5 RESULTS AND DISCUSSION 

After construction of Bayesian network using the 
Bayes Fusion platform (https://www. 
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bayesfusion.com/), a number of patient cases have 
been examined in order to set evidences to the 
network and illustrate its decision-making 
capabilities. Specifically, (84) decision making cases 
on pneumonia severity assessment have been 
derived from a randomly selected set of anonymous 
patients with confirmed pneumonia. The decision-
making capabilities of the technique was presented 
by simulating these patient cases and estimating the 
outcomes. The results have been reported in (Zarikas 
et al., 2015). 

This work provides a pedagogical description of 
all the methodology that was followed to design the 
implemented DSS. It is a response to many requests 
to provide a clear explanation of the reasoning 
behind the formulas presented in (Zarikas et al., 
2015). First, a new methodology for construction of 
BNs using if-then rules and main aspects of fuzzy 
logic is clearly presented and second, the efficient 
modeling and reasoning concerning the 
implementation of all rules to a network with a 
specific topology, is given. The method, we 
presented in this paper can be generalized to similar 
fuzzy rule bases.  

Novel ideas that have been materialized in the 
DSS are: 1) Physicians have not been involved for 
the probability assignments but only for reporting 
and explaining the rules 2) Fuzzy rules have been 
translated into probabilities 2) There is an 
intermediate layer of utilities that transfer their 
values to a central utility node 4) The fuzzy rules are 
comprehensive enough for a physician, and describe 
a simple symptom/disease causal relation. A 
particular set of patients with pulmonary infections 
were studied as a first preliminary test of the 
decision making system on severity assessment and 
show the methodology's performance.  

Future work is focused to analyze and implement 
this approach in other domains and decision 
problems, to include more knowledge and 
information types for the decision model 
enhancement. Specifically, extracted knowledge 
from other sources except physicians’ suggestions, 
such as data through data mining and medical 
guidelines, will be taken under consideration for the 
model enhancement. 
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