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Abstract: We study neural activity synchronization on the basis of instantaneous wavelet correlation function and 

simple mathematical model of brain bursts carrying several spikes.  The approach allows us to obtain 

analytical solution for two neurons generating a given number of spikes and estimate the coupled behavior 

of neurons at different time moments. Neural activity is simulated as a superposition of elementary 

nonstationary Gaussian signals with some given parameters. Time-frequency properties of neural signals are 

studied by continuous wavelet transform with adaptive Morlet mother wavelet function.  

1 INTRODUCTION 

Synchronization of individual neurons and complex 

neuron ensembles plays an important role in the 

central nervous system functioning (Hramov et al., 

2015). A neuron as a pacemaker can generate 

rhythms of various duration and frequencies, regular 

or chaotic. The electric neural activity shows some 

bursts consisting of short pulses (spikes) and low-

frequency oscillations associated with slow changes 

in the membrane potential. In accordance with the 

spike model (Izhikevich, 2006, Kislev, 2016, 

Gerstner et al., 2002) the main carriers of 

information are the number, duration and the 

moments of occurrence of spikes. Synchronization 

of neural activity as a way of information transfer 

has been considered in numerous experimental and 

theoretical works (Izhikevich, 2006, Kislev, 2016, 

Gerstner et al, 2002, Xiaojuan et al., 2011).  

A large number of mathematical models of 

neurons, simulating the dynamics of their electrical 

activity, can be divided into several classes. The first 

class includes the models based on kinetic equations 

simulating the excitation of nerve impulse. Such 

models use a detailed description of ion channels 

kinetics. The classical Hodgkin-Huxley model and 

its various generalizations (Zhou and Kurths, 2003) 

belong to this class of models. The requirements for 

these models consist in accurate reproduction of the 

electrical activity of the mathematical neuron, whose 

electrical activity must correspond to a single pulse 

or bursts of pulses of the real biological neuron. 

The second class of models includes conceptual 

models of neurons (Hramov et al., 2015, Izhikevich, 

2003). These phenomenological models describe the 

effect of ion currents with identical characteristic 

scales by using a single variable. In this case, a few 

ordinary differential equations are sufficient to 

describe the electrical activity of a single neuron. 

The third class includes threshold models of neurons 

(Nekorkin, 2008, Tuchwell, 1988). In this case, the 

system accumulates threshold signals. Their 

combined action results in membrane potential 

reaching the threshold value. This fixed value is 

treated as a spike. Thereafter, the value of the 

membrane potential returns to the initial state. The 

process of synchronization is described by using 

mathematical models of synaptic connections 

(Hramov et al., 2015). It should be noted that both 

the models of functioning of a neuron ensemble and 

synapses connecting the neurons require large 

computing powers. 

In this paper, we use the simplest model 

describing a separate spike in the form of the 

Gaussian signal, which has a certain duration. In this 

model, we assume that all spikes produced by 

neurons have the same shape. The formation of 

individual bursts both for a single neuron and for 

two coupled neurons is given phenomenologically in 

the form of a sequence of individual spikes created 

by the neurons. Such a simple model has the 

advantage of allowing us to solve analytically the 

synchronization problem for two neurons. 

It is assumed that the coding of information in 

the brain is carried out through spike frequencies for 

a single neuron and a group of several neurons 
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(Izhikevich and Gally, 2004). A certain stimulus of 

electrical activity causes excitation of a specific 

group of neurons. In this case, the relative times for 

the production of spikes by different neurons in the 

group are strictly fixed. The evidence is that 

temporal coding serves to represent and process 

information in the cerebral cortex (Lowet et al., 

2016). The same set of neurons can encode a large 

number of different stimuli. Each stimulus is 

characterized by a unique order of spikes emitted by 

different neurons. The same is the case with the 

spacing between the spikes. The activation of neural 

groups, caused by the presence of any stimulus, 

assumes the process of creating spikes with strictly 

fixed delays between them. This procedure of 

creating spikes is observed for all or almost all 

participants of the neural groups. 

Coherent analysis, instantaneous phase-locking, 

entropy transfer, and nonlinear dynamics methods 

have been applied to assess the degree of 

synchronization of neurons (Lowet et al., 2016, 

Mizuno-Matsumoto et al., 2005). Spectral coherence 

method based on the Fourier transform (cross-

spectra) and assuming stationarity of signals has 

long been considered the main method for 

evaluating the interaction of signals related to 

rhythmic brain activity.  It should be noted that 

instantaneous phase synchronization methods are 

recognized as more informative.  

The study (Quyen et al., 2001) on the 

synchronization of neurons at different frequencies 

compares the efficiency of Hilbert transform and 

wavelet transform. At present, it is possible to 

highlight two main directions in the research on the 

synchronization of neurons and neural networks: the 

construction of more complex and more realistic 

models of neurons and their interactions, and the 

development of methods that take into account the 

nonstationary and nonlinear nature of neural 

rhythmic activity. 

The purpose of this work is to develop a model 

of impulse activity of neurons generating spikes; to 

derive analytical wavelet transform that determines 

the time-frequency properties of spikes; to calculate 

wavelet correlation function analytically for 

comprehensive analysis of the synchronization 

processes. 

 

 

 

 

 

2 METHODS 

2.1 Mathematical Model of Neural 
Rhythmic Activity 

In contrast to the complicated models (Hramov et 

al., 2015, Izhikevich, 2003, Nekorkin, 2008, Zhou 

and Kurths, 2003), which consider in detail the 

operation of ion channels, we propose a simple 

mathematical model of the coupling activity of two 

neurons   and  , and formulate the criteria for 

their synchronization. Let the signal  Z t of 

electrical activity of the first  - neuron, be a 

superposition of N  elementary Gaussian signals 
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The simulation (1) assumes the first  - neuron 

involving a number of spikes. We determine the 

time of each spike occurrence either 

phenomenologically or as a solution of more 

complex models of neuron functioning. Each spike 

 ; ;L L LL b t  occurs at a time moment Ltt  , has 

its own amplitude Lb  and duration L . In addition 

to the spikes with L  much smaller than the time 

interval between spikes, this model comprises some 

bursts. Each burst has its own center LВt  and its 

characteristic duration LB  ( LB L ). Various 

bursts of  - neuron do not overlap ( LB  is much 

smaller than the distance between bursts), and the 

number of spikes in each burst can vary. The 

proposed model makes it possible to take into 

account the long-term changes in the work of an 

individual neuron. Various types of effects on the 

neuron (medicinal and light effects) can evoke such 

perturbations. We represent the signal of second 

neuron )(tZ  
as a superposition  
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of Gaussian peaks  KK
ttz  characterized by a set 

of parameters  KKK tbK  ;; . 

Let us consider the expression for the correlation 

function,  
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which shows the coupling between two signals 

( )Z t  and )(tZ  at different time points. We can 

obtain the analytical expression for the cross-

correlation function of two Gaussian signals 
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It is convenient to use the normalized cross-

correlation function  ( )n
LKССF t  with the maximum 

value of  ( )n
LKССF t equal to one at K Lt t t  . 

Taking into account (1), (3), the correlation function 

(4) takes the form 
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We find out that function (6) does not change if 

we reverse the direction of time, and replace all the 

times of spikes’ and neurons’ occurrences by the 

opposite values L Lt t ,  K Kt t  . 

Hereinafter, we assume that all spikes of neurons 

 and   are equal L K     , where  =0.001s, 

and their maximum amplitudes 2L Kb b     are 

equal to one. Suppose that for  -neuron we have

N =4 of spikes  0 1 2 3; ; ;L       localized at

 0.01 ;0.03 ;0.06;0.1Lt s . For  -neuron we 

have N =4,  0 1 2 3; ; ;K      with 

 0.71;0.73;0.79;0.89 kt s . Fig. 1 shows the signal 

 Z t of the first  -neuron. We highlight in bold 

four spikes of this neuron, given by the Gaussian 

peaks. Four spikes forming the signal  Z t

associated with -neuron are not highlighted. 

The first peak of  CCF t at t =0.61 s is due to 

the coupling (correlation) of spikes 0 3( ; )  . The 

second peak at 0.88 s corresponds to the coupling of 

spikes 3 0( ; )  . The peak having a doubled 

amplitude at t =0.70 s is due to the synchronization 

of two pairs of spikes );( 00 
 
and );( 11  . All 

other peaks are related to the difference in 

localization times of other spikes and neurons (Fig. 

1). 

 

 

Figure 1: The dependence of time ,t s for -neuron 

signal  Z t  (in bold) и  -neuron signal. 

Fig.2 shows instantaneous correlation function  

 ССF t (4) for signals  Z t and  Z t . 

 

Figure 2: The dependence of time ,t s for  CCF t . 

2.2 Continuous Wavelet Transform of 
Neural Signal 

Time-frequency properties of   and   neurons 

vary with time. We can successfully process such 

nonstationary signals by Continuous Wavelet 

Transform – CWT. This type of integral transform 

maps nonstationary signal )(tZ to the plane of time 

t  (s) and frequency   (Hz) (Bozhokin, 2010, 

Bozhokin and Suslova, 2015) by the formula 
 

       tdtttZtV  




*, ,  (7) 

where  x  is the mother wavelet function, symbol 

* means  complex conjugation. We use here a new 

adaptive Morlet wavelet function (AMW) with the 

control parameter m   (Bozhokin and Suslova, 

2016): 
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In (8) we have the parameter 2m m   , and 

constant mD defined from the condition   .1
2
 x

The properties of the mother wavelet (8) are given in 

(Bozhokin and Suslova, 2016). In (Bozhokin and 

Suslova, 2016) the value of m  acts as a control 

parameter of AMW. We can change temporal 

resolution x  and frequency resolution F  of 

signals under study by varying m . The 

characteristic moments of time t , which make the 

main contribution to the integral (7), satisfy the 

relation / /x xt t t        .  The adaptive 

mother wavelet (8) acts as a varying window, which 

depends on control parameter m . The window width 

automatically becomes large for small frequencies 

  and small for large ones. 

To calculate (8), we use the Fourier transform of 

all functions in (7):  
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f
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are the Fourier 

components of  Z t
 

and  x . The Fourier  

component  ˆ F
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The application of the AMW makes it possible to 

improve the results for spectral and time resolutions 

of )(tZ  in comparison with the application of the 

conventional Morlet wavelet. We can illustrate the 

fact by considering an infinite harmonic signal 

0( ) cos(2 )Z t f t   with frequency 0f . We can derive 

the analytical expression for continuous wavelet 

transform  ,V t (7) using AMW (8). The maximum 

of  ,V t  is located at point 0f  . The full width 

at half maximum of  ,V t
 

given by 

02 2ln 2 / ( )FWHM f m    decreases with the 

increase in parameter  m . 

If we present the signal  Z t  
as a superposition 

(1) of elementary signals (2), then  ,V t  also 

should be the superposition of wavelet images 

 ,LV t corresponding to the signals (2). The 

wavelet images  ,LV t for our model of neural 

signals can be derived analytically:  
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where  0 Lx t t   , 
2 2 21 2 /L La m    . 

3 RESULTS 

3.1 Wavelet Analysis of Model Neural 
Signals 

Using the simulation (1), we can calculate 

analytically the modulus of wavelet transform 

),( tV   
for signal )(tZ  

with four spikes 

 0.01 ;0.03 ;0.06;0.1Lt s   presented in Fig.1. 

Fig. 3 shows the ridges of two-dimensional surface 

),( tV  . 

 
Figure 3: Modulus of wavelet transform ),( tV   

depending on frequency  , Hz and time ,t s .  

Fig. 4 displays the skeleton of the wavelet 

transform, which shows the location of extremal 

ridges on time-frequency plane.  

 

Figure 4: Skeleton of Modulus of wavelet transform 

),( tV  depending on frequency  ,Hz and time st, . 
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3.2 Wavelet Correlation Behavior 

We introduce wavelet correlation function ),( tWCF 

by the formula 
 

    tdttVtVtWCF  





  ,,),( *
,               (12) 

 

which, in contrast to (4), shows the correlation 

between CWT of two signals ),( tV   and ),( tV   

taken at different time moments. According to the 

principle of superposition wavelet correlation

),( tWCF  (10) can be represented as a double sum, 

which includes ( , )LKWCF t  calculated for 

elementary Gaussian signals. Note that under this 

approach, we can also derive ( , )LKWCF t

analytically.  

Hereinafter, we will need to know the 

normalized function  
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calculated as  ( ) (max)( , ) , /n
LK LK LKWCF t WCF t WCF    with 

maximal value equal to unit. In (13) we have e 

2.72 and 
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Function ( , )LKWCF t
 

reaches its maximal value

(max)
LKWCF at K Lt t t  . Under the condition 

K L     , the value of 
(max)
LKWCF  has its 

maximum at the point 

 2 2
max 1 1/ (16 / (4 )m     , which for  = 

=0.001 s approximately equals to 80 Hz. 

To achieve the best time resolution of spikes, we 

use here the control parameter 1m  . 

Fig.5 shows ),( tWCF   for two neurons   and 

 .  

 

Figure 5: Dependence of ),( tWCF   on frequency 

, Hz and time st, .  

The analysis of Fig. 5 shows that at large 

frequencies 1/ (4 )   (   80 Hz) the time 

behaviour of wavelet correlation modulus 

( , )WCF t 
 

corresponds exactly to the classical 

correlation function  ССF t . The doubled peak at 

t =0.70 s at these frequencies also appears to be due 

to the synchronization of two pairs of spikes 

);( 00  and );( 11  . The special features of low-

frequency behaviour of ),( tWCF   are associated 

with the characteristic intervals of peaks sequence in 

the process of neurons synchronization. 

4 CONCLUSION 

We propose a simple mathematical model of neural 

signals, which allows us to obtain analytical 

expressions for wavelet correlation functions

( , )WCF t  .The neural signal as a sequence of bursts 

containing a certain number of spikes is simulated 

by the superposition of elementary Gaussian signals 

characterized by several parameters such as 

amplitude Lb , duration L  and time of occurrence 

Lt t . 

The study of the maximal value of ( , )WCF t 

depending on time gives the opportunity to detect 

the synchronization of spikes between various 

neurons at different time moments. The dependence 

of  ),( tWCF   on frequency   provides additional 

information on the correlation of spikes. In the 

limiting case 1/ (4 )   , the time behavior of 

),( tWCF   
is identical to that of the classical 

correlation function  ССF t . 
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The task of determining neuronal correlations is 

particularly important in the development of neuro-

interfaces, which are multi-electrode arrays that 

exchange information between the neuronal 

population and the outside world (Bursáki et al., 

2012,). Such neuro-interfaces allow both stimulation 

and synchronous probing of dozens of neurons at the 

cellular level. Our method can be used to determine 

individual spikes of neurons in the patch-clamp 

method (Suk et al., 2017), as well as in studying the 

functioning of mirror neurons (Hou et al., 2017). 

The wavelet-correlation function introduced in 

this paper can be used as a tool to study rapidly 

changing burst processes in radio-physics, plasma 

physics and astrophysics, as well as the stability of 

quantum frequency standards. 
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