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Abstract: This paper introduces a new variant of the electric vehicle routing problem, named PEVRP for Periodic Elec-
tric Vehicles Routing Problem, in which the routing and charging are planned over a multi-period horizon,
subject to frequency constraints, limited fleet of electric vehicles available at the depot, intermediate facilities
for charging during the trips, and partial charging. The objective of the PEVRP is to minimize the total cost
of routing and charging over the time horizon, such that each vehicle could be charged nightly at the deport,
and during the day at charging stations if refuelling is necessary. We propose two constructive heuristics.
The first one is based on clustering technique that aims at allocating customers per vehicle and per period,
and then constructs tour for each vehicle visiting customers and charging stations for refuelling. The second
one is based on best insertion strategy, in which each customer is allocated to its best position that minimizes
charging and routing cost. Using several parameters setting, we compared and analysed the results of the two
proposed approaches on 50 new instances derived from EVRP instances of the literature.

1 INTRODUCTION

Several urban centers encounter to mobility and
goods transportation problems. As they become lar-
ger, traffic congestion, energy consumption, and car-
bon emissions are increasing, imposing many adverse
consequences in terms of environment. In order to
cope with these environmental problems, public insti-
tutions have restricted access to these urban centers,
by imposing public policies. However, these public
policies have limited impact on the problems gene-
rated by transport activities. Others alternatives are
focused on the development of clean vehicles, such
as electric or hydrogen vehicles.

Thanks to technological progress, especially the
storage capacity of batteries, electric vehicle beco-
mes a promising tool to meet the challenge of de-
carbonising transport activities. Services using elec-
tric vehicles are already deployed to meet the demand
of mobility through several cities, especially for daily
commuting such as Autolib in Paris. However, there
are some factors that prevent massive use of vehicles
in all transport activities. These factors are mainly,
limited to electric vehicle driving range, long char-
ging time of electric vehicle batteries, and the avai-
lability of a charging infrastructure. However, to en-
sure a successful deployment of electric vehicles in
the short-term, it is significant to target development

towards (i) specific usage categories where the elec-
tric vehicle is the most suitable (e.g. urban transport,
urban logistic, business fleet) in terms of the driving
range, load capacity, and operating cost, and (ii) ma-
nage operations of a complex landscape of ecosystem
of EVs (vehicles - chargers - electricity grid - fleet
management) with a focus on the new optimization
challenges aiming to develop efficient models and de-
cision tools to manage the ecosystem of electric vehi-
cles. In fact, to plan their activities, several fleet ma-
nagers use decision software tools either at tactical
(sizing of the fleet, etc.) or operational (route opti-
mization, performance monitoring, tracking of vehi-
cles, etc.) level. However, the existing route plan-
ning software are not suitable for planning routing of
electric vehicles, since they do not take into account
the specificities of the ecosystem of electric vehicles
(autonomy, charging time, charging rate of batteries,
type and the availability of charging stations, capa-
city of the electricity grid, the cost of energy, etc.),
and these tools need to be upgraded in order to con-
sider the ecosystem of electric vehicle. This upgrade
requires the development of new and efficient optimi-
zation models and decision tools to manage the whole
ecosystem of the electric vehicles.

In this paper, we focus our study on a specific
usage in which electric vehicles are most suitable such
as parcel or mail delivery in which agents distribute
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commodities to clients. More precisely, we consi-
der the periodic electric vehicle routing problem, in
which a set of customers require visits on one or more
days within a planning period, and there is a set of fea-
sible visit options for each customer. Customers must
be assigned to a feasible visit option. The typical ob-
jective is to minimize the total cost including charging
and traveling costs over the planning period, more de-
tails of the problem are provided in section 3. The rest
of the paper is organized as follows. Section 2 provi-
des a selective review on the studied problem. Section
3 gives more details on the constraints and charac-
teristics of our problem. Section 4 proposes solving
approaches based on constructive heuristics. Section
5 presents experimental results. Section 6 concludes
this study with a short summary and provides an out-
look on future research.

2 RELATED WORK

The design of weekly transportation plans arises in di-
verse applications in urban logistics, such as the col-
lection of recyclables or mails, the routing of healt-
hcare nurses, the transportation of elderly or disabled
persons, etc. This gives rise to a so-called pe- rio-
dic vehicle routing problems (PVRP), which has been
introduced in (Christofides and Beasley, 1984). The
objective of the PVRP is to find a set of routes over
time horizon of h periods of days that minimizes to-
tal travel time while satisfying vehicle capacity, pre-
determined visit frequency for each client, and spa-
cing constraints. For a client, the spacing constraints
can be defined either by minimum and maximum pe-
riods between consecutive visits, or by a set of allo-
wed period combinations. The periodic vehicle rou-
ting problem consists of selecting for each client a day
combinations (tactical decisions), and then of con-
structing routes for clients assigned to each day (ope-
rational decisions). Several objective functions can
be considered, such as minimizing the traveled dis-
tance, intra-days load balancing, or total transporta-
tion cost. Since the PVRP is NP-Hard problem, most
of works in literature presents heuristic and metaheu-
ristic approaches (Mancini, 2016), (Dayarian et al.,
2016), (Baldacci et al., 2011). A survey on the PVRP
can be found in (Francis et al., 2008).

Electric vehicle routing problems have attracted
close attention from researchers and business organi-
zations in recent years. Several variants of electric
vehicle routing problems have been studied in the li-
terature. (Schneider et al., 2014) introduced the Elec-
tric Vehicle Routing Problem with Time Windows and
Recharging Stations. The EVRP problem with mixed

fleet is addressed in (Goeke and Schneider, 2015).
Authors consider a fleet of electric and conventional
vehicles with time windows constraints. (Hiermann
et al., 2016) consider a heterogeneous fleet of vehicles
that differ in their capacity, battery size and acquisi-
tion cost. In (Felipe et al., 2014), the authors pre-
sent a variation of the electric vehicle routing problem
in which different charging technologies are conside-
red and partial EV charging is allowed. (Schiffer and
Walther, 2017) proposed an electric location routing
problem with time windows and partial recharging.
The papers consider routing of electric vehicles and
siting decisions for charging stations simultaneously
in order to support strategic decisions of logistics fleet
operators. In (Sassi et al., 2015b), (Sassi et al., 2015a)
a rich variant of Electric Vehicles Routing Problem
related to a real application is proposed. This vari-
ant considers a Mixed fleet of conventional and he-
terogeneous electric vehicles and includes different
charging technologies, partial EV charging, compa-
tibility between vehicles. The charging stations could
propose different charging costs even if they propose
the same charging technology and they are subject to
operating time windows constraints The only study
in the literature that addressed the multi-periodic as-
pect for electric vehicles could be found in (Zhang
et al., 2017), but the routing and the charging over the
period is not considered. This study deals with the
multi-period planning of the charger location problem
for EVs considering facilities capacity and dynamic
demands. The aim is to determine the locations of
chargers as well as the number of charging modules at
each station over multiple time periods. In summary,
the current EVRP literature is limited to daily or stra-
tegic planning. Although EVs routing problems have
attracted close attention from researchers and busi-
ness organizations in recent years, the periodic ex-
tension of electric vehicles routing problem has never
been studied. In our study to be presented below, we
propose a new variant named PEVRP (Periodic Elec-
tric Vehicle Routing Problem), which deals with tacti-
cal and operational decisions level for electric vehi-
cles routing and charging. The aim is to define a rou-
ting and a charging plan for each vehicle over a plan-
ning horizon. Two constructive heuristics are propo-
sed. The first one is based on clustering technique
that aims at allocating customers per vehicle and per
period, and then constructs tours for each vehicle vi-
siting customers and charging stations for refuelling.
The second one is based on best insertion strategy, in
which each customer is allocated to it best position
that minimizes charging and routing cost.

Constructive Heuristics for Periodic Electric Vehicle Routing Problem

265



3 PROBLEM DEFINITION

The Periodic Electric Vehicle Routing Problem (PE-
VRP) is defined on complete directed graph G =
(V,A). V denotes the set of vertices composed of the
set C of n customers, a depot denoted by 0, and the
set B of ns external charging stations. The set of arcs
is denoted by A = {(i, j) | i, j ∈V} .

Each arc (i, j) of A is described by distance di, j,
travel time ti, j, and travel cost ci, j . When an arc (i, j)
is travelled by an electric Vehicle (EV), it consumes
an amount of energy ei, j = r× di, j , where r denotes
a constant energy consumption rate. Each customer i
has a demand qi, and a service time si. We consider
a time horizon H of np periods typically ”days”, in
which each customer i has a frequency f (i) = 1, and
a set of allowed visit days D(i) ∈ H. This means that
customer i must be serviced one time in D(i), but at
most once in the chosen day.

The set B is defined by ns external charging sta-
tions that can be visited during each day of the plan-
ning horizon. In most studies of the literature on rou-
ting with electric vehicles, the charging cost depends
either on the amount of powers delivered by the char-
gers or on the total time spent for charging the vehi-
cles. In this paper, we consider a fixed charging cost
Cc, that neither depends on the amount of the deli-
vered energy nor on the time needed to charge the
vehicle. This assumption is more realistic since char-
ging service providers are energy operators and law
prohibits companies that offer charging services from
reselling the energy, as they sell services, prices do
not depend on the amount of energy, but depends on
the quality of service (fast or slow charging) (Sassi
et al., 2015b) (Sassi et al., 2015a).The depot contains
charging points, allowing free charging at night and
during the day. The amount of power delivered to
each vehicle k at the night of day h is a decision varia-
ble Ph,0,k, defining the vehicle’s initial state of charge
at the beginning of the trip of the vehicle k for the day
h+1, h ∈ 1...np (Pnp,0,k defines the charging at night
for day 1 for the vehicle k). A feasible solution to our
problem is composed of a set of routes and a charging
planning for each vehicle over the planning horizon.
A feasible route is a sequence of nodes that satisfies
the following set of constraints:
• Each route must start and end at the depot;
• the overall amount of goods delivered along the

route, given by the sum of the demands qi for each
visited customer, must not exceed the vehicle ca-
pacity Q;

• the total duration of each route, calculated as the
sum of all travel durations required to visit a set of
customers, the time required to charge the vehicle

during the day, the service time of each customer,
could not exceed T ;

• no more than m electric vehicles are used;

• each customer should be visited once during the
planning horizon, and the visit day must be in
D(i).

The PEVRP consists of assigning each client i to one
service day defined by D(i) to minimize the total
cost of routing and charging over H. The objective
function to be minimized is f (x) = α× f1(x)+Cc×
nbs(x) where: f1 is the total distance of the solution x
over the planning period H, and nbs is the total num-
ber of visits to charging stations over the planning pe-
riod. α is a given weight representing the cost of one
unity of distance.

4 SOLVING APPROACHES

The PEVRP is obviously NP-hard because it includes
the basic (single-period) EVRP as a particular case, so
large instance can hardly be solved by exact methods.
The best way to tackle this problem is using heuristic
approaches. In this section, we investigated extension
of the best insertion heuristic, namely BIH (Best In-
sertion Heuristic). Another approach, based on Clus-
tering Analysis, namely CLH (Clustering heuristic) is
also proposed. In the following, we provide details of
each heuristic.

4.1 Best Insertion Heuristic (BIH)

The Best Insertion Heuristic (BIH) directly builds in
parallel the tours for each day. Roughly speaking, m
tours, initially empty, are defined for each day. At
each iteration and for each day, we consider the inser-
tion in all available non-empty tours and in one new
empty tour without exceeding m tours by day. For
each customer i and for any possible day d ∈ D(i),
the algorithm simulates the insertion of i in all pos-
sible positions of all considered tours of period d. If
the residual vehicle energy is not enough to add i in
a given position k of a considered tour tr, the algo-
rithm simulates the insertion of i and a charging sta-
tion b ∈ B∪{0} simultaneously. For the insertion of
b, we choose the less costly charging station that al-
low satisfying the energy constraint. The total cost
variation of f (x) is computed for each insertion si-
mulation. The customer (and eventually the charging
station) with the minimum insertion cost is inserted
at the end of each iteration at its best position. The
best position is given by a day h ∈ D(i), the tour tr in
the considered tours of h, and a position k ∈ tr for i
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(and if needed a position k′ ∈ tr for b ). The heuristic
stops if all clients are inserted or when no insertion is
possible.

4.2 Clustering Heuristic (CLH)

The proposed CLH algorithm proceeds in four steps.
The first step aims at creating m initial clusters in each
day, one for each available vehicle. In the second step,
for each day d, the algorithm CLH tries to dispatch the
maximum number of remaining customers in the m
available clusters of the day d, without inserting any
charging station, and using as criterion the smoothing
of Distance(cld) overs all clusters of the day d. In step
3, the customers not inserted in step 2 due to energy
constraint, will be considered. In this step, the in-
sertion objective is the minimization of the additional
energy consumption for each cluster. Finally, in the
fourth step, a best insertion TSP heuristic is used to
find a feasible route in each cluster for each day. More
precisely, for each cluster cld , we compute an estima-
tion of 1) the distance Distance(cld), 2) the energy
consumption Energy(cld), and 3) the Time Time(cld)
needed to perform an electric TSP tour, starting from
depot, visiting once all nodes in cld , and charging sta-
tions if necessary, and returning to the depot. We also
compute the Load(cld) that represents the total quan-
tity to be served in the cluster cld . Details of the CLH
steps are given bellow.

Distance(cld) is an estimation of the length of the
tour starting at the depot, visiting all customers in cld
and ends at the depot. It is computed according to (1)
(2) (3).

Distance(cld)=min(Distance1(cld),Distance2(cld))
(1)

Distance1(cld) is an overestimation computed ac-
cording to the costly arc in cld .

Distance2(cld) uses an approximation based on
the distance of each customers to the center of the
cluster.

Distance1(cld) = |cld−1|× max
i, j∈cld

di, j +2×max
i∈cld

di,0

(2)
Distance2(cld)= 2× ∑

i∈cld

dcenter(cld),i+2×dcenter(cld),0

(3)

Energy(cld) = r×Distance(cld)
Time(cld) = min(Time1(cld),Time2(cld))

Time1(cld) (respectively Time2(cld)) is computed as
Distance1(cld)(respectively Distance2(cld)) by repla-
cing di, j by ti, j.

Load(cld) = ∑
i∈cld

qi

Check − Energy − Feasibility(cld): this function
check the energy feasibility of the solution that will
be obtained in cld and return true if Energy(cld)≤ E.
Check−Constraints−Feasibility(cld): this function
check the feasibility of the solution that will be obtai-
ned in cld and return true If Load(cld) ≤ Q and
Time(cld)≤ T .

Step 1. Cluster Initialization

The cluster initialization starts by assigning all cus-
tomers having one allowed day visit (all i ∈ V , with
|D(i)|= 1), because these clients will be the most dif-
ficult to insert in the tours. Let Ld be the list of custo-
mers of the day d, and ListEd the list of the exclusive
clients i for day d, such that D(i) = {d}. The cluster
initialization algorithms is given bellow :
1. d := 1

2. ListEd = {i ∈ V, |D(i)| = 1 and D(i) = {d}},
Nbclusterd =|ListEd |

3. If Nbclusterd ≥ m go to step 4, Else go to step 7

4. Initialization: for each given client i∈ ListEd , one
cluster cld,a = {i} is created

5. While Nbclusterd ≥ m do search for the closest
clusters a and b, such that Check−Constraints−
Feasibility(a∪ b) = true, merge a and b in one
new cluster a and delete b.

6. d = d +1, if d = np+1 stop else go to 2

7. For each given customer i∈ ListEd , a cluster cld,a
= {i} is created. As we need to have m initial clus-
ters, we must add m−Nbclusterd clusters. Let
be L(z) a list of the customers not considered in
the available clusters (d ∈ D(i) and |D(i)| = z,
z∈ 2..np). Choose randomly m−Nbclusterd cus-
tomers such as each customer form a new clus-
ter considering at first L(2), then L(3), and so
L(z+1) until m clusters are formed.

Step 2. Customer’s Insertion without Additional
Energy

Let listcl be the list of available clusters over all the
planning horizon, and L be the list of customers i
not assigned to any cluster, sorted in increasing or-
der according to the value |D(i)|. The algorithm
repeats the following two steps until L = ∅ . In
the first step, the algorithm selects i from the head
of L, and scans all feasible insertions in each day
d ∈ D(i) and in each cluster of day d, using Check−
Constraints− Feasibility(cld ∪ {i}). In the second
step, the cluster a (see formula (4)) that minimizes
the distance increases over all clusters is selected (if
Check −Constraints− Feasibility(cld ∪ {i})= false
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for each d then put a := ∅). If a 6= ∅, and if
Check−Energy−Feasibility(cld ∪{i}) = true, insert
i in a and delete i from L, else insert i in L2. If a =∅,
delete i from L and insert i in L1.

a= arg min
∀i∈L

∀cld∈listcl

{Distance(cld∪{i})−Distance(cld)}

(4)
At the end of this algorithm, the list L1 will contain all
customers ejected due to the violation of capacity and
time constraint. The list L2 will contain the clients
ejected due to the violation of the energy constraint.
All customers in L2 will be introduced in the next step.

Step 3. Customer’s Insertion with Additional
Energy

This step aims to insert all customers from L2 while
minimizing the increase of the energy consumption.
We know that all customers in L2 verify the capa-
city and the time constraints for at least one clus-
ter. At first, L2 is sorted according to the value
of |D(i)|, then we select the cluster a that verifies
Check−Constraints−Feasibility(a∪{i}) and mini-
mizes the energy increase according to the following
formula.

a = arg min
∀i∈L

∀cld∈listcl

{Energy(cld ∪{i})−Energy(cld)}

(5)

Step 4. Route Construction

In this step, each cluster will be considered to con-
struct a tour using the best insertion method. This
method builds a tour, starting by an empty tour com-
posed by a loop in the depot, and extends the tour
customer per customer. At each iteration, for each
customer i, the algorithm simulates the insertion of i
in each position in the tour. If the residual vehicle
energy is not enough to add i, the algorithm simulates
simultaneously the insertion of i and a charging sta-
tion b ∈ B∪{0}. The total cost variation of f (x) is
computed for each insertion simulation. The custo-
mer i with the minimum insertion cost is inserted at
it best position at the end of each iteration.The cost
of inserting a customer includes the cost of inserting
charging stations if necessary.

5 COMPUTATIONAL
EXPERIMENTS

5.1 Data Sets

Our methods are implemented using C++. All com-
putations are carried out on an Intel Core (TM) i7-
5600U CPU, 2.60 GHz processor, with 8GB RAM
memory. In this paper, we proposed a new PEVRP
instances inspired by the data instances provided by
(Felipe et al., 2014). These instances are divided on
two types: in instances of type A, the depot is cen-
trally located and there are nine charging stations, and
in instances of type B, the depot is at a corner and
there are only five charging stations (including char-
ging at the depot).

We considered a limited homogeneous fleet of
vehicles and we adjust parameters of cited above ar-
ticle to our problem. We consider the following set-
tings:

• Number of customers: n=100 and n=200

• Number of vehicles: in the interval [
√

n
4 ,
√

n
2 ]

• Battery capacity: 20 kWh (equivalent to a range
of 160 km).

• Energy consumption: 0.125 kWh/km.

• Average speed: 80 km/h.

• Vehicle capacity: 20000 Kg.

• Maximum route duration: 8 h.

• Recharging power: 10kWh and a fixed cost of
charging service of 2.5 e

Furthermore, we randomly generated visit days
for each client respecting the following rule: in each
day, the exclusive clients are selected randomly, then
for the rest of clients we randomly generate the visi-
ting days.

As the generation of visiting days being influen-
tial on the toughness of the problem, we generate 10
instances for each setting parameters by varying the
visiting days for each customer.

5.2 Comparative Analysis

In this section, we analyse the performance of the pro-
posed methods on the PEVRP generated instances.

Our first computation are on instances with 100
clients and 2 vehicles and we allow only two visiting
days. Table 1 provides results of heuristics CLH and
BIH on five setting parameters for each type-instance
(A and B). For each setting we generate 10 random in-
stances.Thus, we have 100 tested instances in table 1.
The average CPU time in seconds (CPU), the average
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Table 1: Instances with 100 clients and 2 vehicles.

CLH BIH

CPU f (x) N.V.C CPU f (x) N.V.C

A1 0,44 90,47 0,00 % 4,10 87,56 0,00%

A2 0,56 104,69 0,00 % 4,42 88,01 0,00%

A3 0,61 102,25 0,00 % 3,85 83,73 0,00%

A4 0,56 106,49 0,00 % 4,14 91,61 0,00%

A5 0,65 105,31 0,40% 4,51 97,98 0,00%

B1 0,46 61,13 0,00% 4,71 45,09 0,00%

B2 0,63 65,45 0,00% 5,37 48,36 0,00%

B3 0,65 65,91 0,00% 5,24 47,68 0,00%

B4 0,59 68,34 0,00% 5,11 50,47 0,00%

B5 0,62 66,74 0,00% 4,86 47,87 0,00%

Average 0,58 83,68 0,04% 4,63 68,84 0,00%

cost of the solution (f(x)) and the average number of
non serviced clients (NVC) over all 10 instances are
reported in table 1 as results of computation. The
CPU time is indicated in the first column, the cost of
solution and the number of non serviced clients are re-
ported in the second and third columns, respectively,
for each solving method.

Regarding results of table 1, clearly CLH heuris-
tic is faster than BIH heuristic, however, CLH fails to
visit all clients, whereas heuristic BIH is able to vi-
sit all clients in all instances. BIH heuristic performs

Figure 1: Evaluation of the cost variation.

Figure 2: Evaluation of the CPU variation.

Table 2: Instances with 200 clients and 2 days.

v=2

CLH BIH

Inst CPU N.V.C f (x) CPU N.V.C f (x)

A1 2,96 0,30% 104,03 e 28,41 0,00% 107,47 e

A2 3,18 0,00% 105,12 e 27,70 0,00% 112,27 e

A3 3,38 0,70% 108,31 e 28,70 0,20% 111,27 e

A4 2,84 0,00% 109,56 e 28,84 0,00% 110,40 e

A5 3,22 0,90% 110,19 e 26,33 0,60% 111,31 e

B1 3,85 0,00% 93,90 e 41,83 0,00% 71,30 e

B2 4,63 0,00% 98,06 e 38,35 0,00% 74,84 e

B3 4,56 0,00% 97,08 e 36,12 0,00% 73,72 e

B4 4,31 0,00% 98,86 e 35,98 0,00% 74,01 e

B5 4,29 0,00% 98,01 e 35,00 0,00% 74,82 e

Average 3,72 0,19% 102,31 e 32,73 0,08% 92,14 e

v=3

CLH BIH

Inst CPU N.V.C f (x) CPU N.V.C f (x)

A1 1,78 0,30% 140,22 e 26,13 0,00% 138,49 e

A2 2,03 0,20% 137,27 e 24,99 0,00% 128,64 e

A3 1,83 0,60% 142,81 e 25,73 0,00% 138,62 e

A4 1,77 0,00% 144,24 e 25,39 0,00% 134,73 e

A5 1,89 0,60% 138,42 e 25,07 0,10% 135,77 e

B1 1,81 0,10% 97,09 e 30,26 0,00% 68,64 e

B2 2,48 0,00% 104,55 e 30,00 0,00% 70,40 e

B3 2,38 0,00% 104,44 e 27,83 0,00% 69,47 e

B4 2,45 0,00% 105,91 e 31,37 0,00% 73,64 e

B5 2,45 0,00% 104,40 e 29,02 0,00% 71,48 e

Average 2,09 0,18% 121,93 e 27,58 0,01% 102,99 e

better than CLH even if it’s slower. Furthermore, the
heuristic CLH is more suitable for instances of type B
than instances of type A.

For a better performance study of the two heuris-
tics, we considered several settings of parameters. In
the following we will use the notation (n,d,v) to des-
cribe a setting parameters, n being the number of cus-
tomers, d the number of available days and v the num-
ber of vehicles. As before, each type-instance has 5
setting parameters, and for each setting parameters,
we generate 10 instances. Thus, for each setting we
have 50 instances.

Firstly, we set the number of customers to 100,
the number of available days to 2, and the number
of vehicles to 3 and 4. Then we increase the num-
ber of available days to 3, while setting v to 2. Fi-
nally, we took the 200 customers instances, and va-
rying d and v between 2 and 3. The results given in
tables 1 to 5 show that BIH remains better than CLH
in terms of solution cost for all instances. The BIH
method successfully inserted all customers except for
two instances.The average percentage of non-inserted
clients remains very low for BIH, whereas CLH can-
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Table 3: Instances with 100clients and 2 days.

v=2

CLH BIH

Instance CPU N.V.C f (x) CPU N.V.C f (x)

A1 0,44 0,00% 90,47 e 4,10 0,00% 87,56 e

A2 0,56 0,00% 104,69 e 4,42 0,00% 88,01 e

A3 0,61 0,00% 102,25 e 3,85 0,00% 83,73 e

A4 0,56 0,00% 106,49 e 4,14 0,00% 91,61 e

A5 0,65 0,40% 105,31 e 4,51 0,00% 97,98 e

B1 0,46 0,00% 61,13 e 4,71 0,00% 45,09 e

B2 0,63 0,00% 65,45 e 5,37 0,00% 48,36 e

B3 0,65 0,00% 65,91 e 5,24 0,00% 47,68 e

B4 0,59 0,00% 68,34 e 5,11 0,00% 50,47 e

B5 0,62 0,00% 66,74 e 4,86 0,00% 47,87 e

Average 0,58 0,04% 83,68 e 4,63 0,00% 68,84 e

v=3

CLH BIH

Instance CPU N.V.C f (x) CPU N.V.C f (x)

A1 0,38 0,00% 107,63 e 3,92 0,00% 80,95 e

A2 0,46 0,00% 108,85 e 4,77 0,00% 81,97 e

A3 0,49 0,00% 104,18 e 3,83 0,00% 83,40 e

A4 0,33 0,00% 113,88 e 3,47 0,00% 89,08 e

A5 0,36 0,30% 111,09 e 3,59 0,00% 91,80 e

B1 0,45 0,00% 65,99 e 5,80 0,00% 45,84 e

B2 0,42 0,00% 72,25 e 5,38 0,00% 48,55 e

B3 0,50 0,00% 72,32 e 5,61 0,00% 47,36 e

B4 0,36 0,00% 74,01 e 4,52 0,00% 48,75 e

B5 0,42 0,00% 72,78 e 4,15 0,00% 48,32 e

Average 0,42 0,03% 90,30 e 4,50 0,00% 66,60 e

v=4

CLH BIH

Instance CPU N.V.C f (x) CPU N.V.C f (x)

A1 0,31 0,00% 106,07 e 3,56 0,00% 82,41 e

A2 0,32 0,00% 109,17 e 3,52 0,00% 82,82 e

A3 0,41 0,00% 108,48 e 3,45 0,00% 80,83 e

A4 0,33 0,20% 118,76 e 3,73 0,00% 86,98 e

A5 0,35 0,30% 113,57 e 3,72 0,00% 88,83 e

B1 0,33 0,00% 70,62 e 4,80 0,00% 45,84 e

B2 0,31 0,00% 74,37 e 4,39 0,00% 48,55 e

B3 0,36 0,00% 75,86 e 4,16 0,00% 47,36 e

B4 0,33 0,00% 76,72 e 4,31 0,00% 48,75 e

B5 0,34 0,00% 77,20 e 3,67 0,00% 48,32 e

Average 0,34 0,05% 93,08 e 3,93 0,00% 66,07 e

not manage to insert all clients in most instances. The
computing time of BIH remains higher than the com-
puting time of CLH, but this computing time of BIH
is always reasonable (it reaches at maximum 32,73
seconds).

In the following two figures, we compare the
average CPU and the average cost of the solutions
obtained by the two heuristics in the different settings
of instances.

Table 4: Instances with 100 clients and 3 days.

v=2

CLH BIH

Inst CPU N.V.C f (x) CPU N.V.C f (x)

A1 0,25 0,00% 123,55 e 3,40 0,00% 95,86 e

A2 0,25 0,00% 134,72 e 3,40 0,00% 94,98 e

A3 0,25 0,00% 127,15 e 3,20 0,00% 92,56 e

A4 0,25 0,00% 135,92 e 3,13 0,00% 98,83 e

A5 0,26 0,00% 130,60 e 3,36 0,00% 98,90 e

B1 0,18 0,00% 123,55 e 3,56 0,00% 45,84 e

B2 0,18 0,00% 134,72 e 3,38 0,00% 48,55 e

B3 0,18 0,00% 127,15 e 3,17 0,00% 47,36 e

B4 0,18 0,00% 135,92 e 3,46 0,00% 48,75 e

B5 0,19 0,00% 130,60 e 3,26 0,00% 48,32 e

Average 0,22 0,00% 130,39 e 3,33 0,00% 71,99 e

Table 5: Instances with n=200 and day=3.

v=2

CLH BIH

Inst CPU N.V.C f (x) CPU N.V.C f (x)

A1 1,63 0,10% 153,76 e 20,83 0,00% 148,40 e

A2 1,47 0,00% 162,50 e 20,28 0,00% 136,95 e

A3 1,50 0,20% 162,69 e 21,01 0,00% 146,32 e

A4 1,69 0,00% 162,47 e 19,93 0,00% 149,88 e

A5 1,70 0,40% 164,34 e 21,87 0,00% 147,28 e

B1 1,81 0,10% 97,09 e 25,21 0,00% 74,81 e

B2 2,48 0,00% 104,55 e 25,57 0,00% 77,17 e

B3 2,38 0,00% 104,44 e 24,31 0,00% 79,56 e

B4 2,45 0,00% 105,91 e 28,36 0,00% 77,54 e

B5 2,45 0,00% 104,40 e 28,01 0,00% 78,89 e

Average 1,96 0,08% 132,21 e 23,54 0,00% 111,68 e

If we compare the two heuristics for the 100 custo-
mers and 2 days instances in terms of cost, we could
see that the BIH heuristic performance is improved
by the increase of v, which is explained by the more
possibilities given to insert the customers and the less
needs to visit charging stations. In the other hand, the
cost of solutions given by the CLH heuristic is increa-
sing, which is due to the fact that the heuristic use in-
evitably all the vehicles every day. We predicate that
there is an optimal number of vehicles for the CLH
and that a smaller or even bigger fleet increases the
cost. BIH being not constrained to use all the vehi-
cles.

6 CONCLUSION

This paper addresses a new extension of the EVRP,
named PEVRP (Periodic Electric VRP), in which the
routing and charging are planned over a multi-period
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horizon, subject to frequency constraints, limited fleet
of electric vehicles available at the depot, intermedi-
ate facilities for charging during the trips, and partial
charging. We have proposed two constructive heu-
ristics, Best Insertion Heuristic (BIH) and Clustering
Method (CLH). These methods are tested on instan-
ces derived from EVRP instances with up to 200 cus-
tomers. Computational experiments show the effecti-
veness of the BIH approach. In further researches, we
aim to improve the CLH method by a post optimisa-
tion step, and to propose a metaheuristic approach.It
will also be interesting to develop more efficient lo-
wer bounds. Another perspective is to generalize the
PEVRP model considering that f (i)≥ 1.
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