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Abstract: We concern ourselves with the combinatorial optimisation problem of determining a minimum total colouring
of a graph G for the case wherein G is a join graph G = G1 ∗G2 or a cobipartite graph G = (V1 ∪V2,E(G)).
We present algorithms for computing a feasible, not necessarily optimal, solution for this problem, providing
the following upper bounds for the total chromatic numbers of these graphs (let ni := |Vi| and �i := �(Gi)
for i ∈ {1,2} and � ∈ {∆,χ,χ′,χ′′}): χ′′(G) 6 max{n1,n2}+ 1+P(G1,G2) if G is a join graph, wherein
P(G1,G2) :=min{∆1+∆2+1,max{χ′1,χ′′2}}; χ′′(G)6max{n1,n2}+2(max{∆B

1 ,∆
B
2}+1) if G is cobipartite,

wherein ∆B
i := maxu∈Vi dG[∂G(Vi)](u) for i∈ {1,2}. Our algorithm for the cobipartite graphs runs in polynomial

time. Our algorithm for the join graphs runs in polynomial time if P(G1,G2) is replaced by ∆1 +∆2 +1 or if
it can be computed in polynomial time. We also prove the Total Colouring Conjecture for some subclasses of
join graphs, such as some joins of indifference (unitary interval) graphs.

1 INTRODUCTION

Many variants of graph colouring problems have
been developed and studied in the last century, each
with its importance, applications, and open ques-
tions3. Although most of these combinatorial op-
timisation problems are NP-hard, there are some
polynomial-time algorithms which compute feasible
colourings using upper bounds for the optimal num-
ber of colours. In the particular case of total colour-
ings, which have applications e.g. in scheduling and
in task management in networks (Leidner, 2012),
some upper bounds for the total chromatic number of
a general n-order graph G of maximum degree ∆ are:

• χ′′(G)6 n+1 (Behzad et al., 1967);

• χ′′(G)6 χ′(G)+2
√

χ(G) (Hind, 1990);

• χ′′(G)6 ∆+1026 (Molloy and Reed, 1998);

• χ′′(G)6 ∆+8(ln∆)8 (Hind et al., 2000).

This paper presents potentially better upper bounds
for the case wherein G is a join or a cobipartite graph.

∗Partially supported by UFFS, 23205.001243/2016-30.
†Partially supported by CNPq, 428941/2016-8.
3For an introduction on Graph Colouring we refer the

reader to (Jensen and Toft, 1994).

The join of two graphs G1 = (V1,E1) and G2 =
(V2,E2), denoted by G1 ∗G2, is the graph defined by
V (G1 ∗G2) := V1 ∪V2 and E(G1 ∗G2) := E1 ∪E2 ∪
{v1v2 : v1 ∈V1 and v2 ∈V2}. A join graph is the re-
sult of the join of two graphs. Remark that, if G1
and G2 are not the same K1 graph, we can assume
without loss of generality that they are disjoint (Zorzi
and Zatesko, 2016). A cobipartite graph is the com-
plement of a bipartite graph. Since a graph is a join
graph if and only if it is the K1 or its complement is
disconnected, join graphs and cobipartite graphs can
be recognised in linear time using, for instance, the
algorithms presented in (Ito and Yokoyama, 1998).

Figure 1: In the left, the join graph K3 ∗C4. In the right, a
cobipartite graph with n1 = 3 and n2 = 4.

Join graphs and cobipartite graphs have already
been studied by several works in the context of edge-
colourings, with some partial results been found (Si-
mone and de Mello, 2006; Simone and Galluccio,
2007; Simone and Galluccio, 2009; Machado and
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de Figueiredo, 2010; Simone and Galluccio, 2013;
Lima et al., 2015; Zorzi and Zatesko, 2016; Za-
tesko et al., 2017). One of the reasons why hard
graph problems are studied when restricted to join
graphs, for example, is the straightforward observa-
tion that the class of the join graphs includes some
other very important graph classes, such as graphs
with a spanning star, complete multipartite graphs,
and connected cographs. It is worthy mentioning that
almost every graph can be turned into a cograph with
no more than 1

2

(n
2

)
− 1

5 ηn
1
2 edge addition or deletion

operations (Corneil et al., 1985; Alon and Stav, 2008).
This paper is structured as follows. The remain-

ing of this section introduces some of the definitions
used and some known facts relevant for the results we
present. In Sections 2 and 3, we present the upper
bounds obtained for the total chromatic number of co-
bipartite graphs and join graphs, respectively. In Sec-
tion 4, we discuss how to improve the bound for some
join graphs, and this improvement enlarges the class
of join graphs for which the Total Colouring Conjec-
ture is known to be true. Finally, Section 5 concludes
with remarks for future works.

Other Definitions and Related Results

In this paper, we use the term graph to refer always to
a simple graph, i.e. an undirected loopless graph with-
out multiple edges. Definitions concerning to graph-
theoretical concepts follow their usual meanings and
notation. Particularly, the degree of a vertex u in a
graph G is denoted by dG(u) := |NG(u)| = |∂G(u)|,
wherein NG(u) and ∂G(u) denote, respectively, the set
of the neighbours of u in G and the set of the edges
incident to u in G. Also, for any X ⊆ V (G), ∂G(X)
denotes the cut defined by X in G, i.e. the set of the
edges of G with exactly one endpoint in X .

Let G be a graph and C be a set of t colours. A
t-vertex-colouring is a function ϕ : V (G)→ C injec-
tive in {u,v} for all uv ∈ E(G). The least t for which
G is t-vertex-colourable is the chromatic number of
G, denoted by χ(G). A t-edge-colouring is a function
ϕ : E(G)→C injective in ∂G(u) for all u∈V (G). The
least t for which G is t-edge-colourable is the chro-
matic index of G, denoted by χ′(G). A t-total colour-
ing is a function ϕ : V (G)∪E(G)→ C injective in
{u,v} and injective in ∂G(u)∪{u} for all u ∈ V (G)
and all v ∈ NG(u). The least t for which G is t-total
colourable is the total chromatic number of G, de-
noted by χ′′(G). Obviously, χ′′(G)6 χ(G)+χ′(G).

If uv ∈ E(G), G− uv is t-edge-colourable, and
dG−uv(w) < t for all w ∈ NG(u)∪{u}, then G is also
t-edge-colourable (Vizing, 1964). Vizing’s proof for
this statement is constructive and often referred as

Vizing’s Recolouring Procedure. Also, it implies that
χ′(G) is either ∆(G) or ∆(G)+ 1, in which case G is
said to be Class 1 or Class 2, respectively. Although
Vizing’s Recolouring Procedure yields a polynomial-
time algorithm for computing a (∆(G) + 1)-edge-
colouring of any graph G, deciding if G is Class 1 is
NP-complete (Holyer, 1981), even restricted to per-
fect graphs (Cai and Ellis, 1991), a class of graphs for
which optimal vertex-colourings can be computed in
polynomial time using linear programming — see, for
example, (Grötschel et al., 1988, Chapter 9).

If G is a graph on n vertices with maximum degree
∆ > n/3, the Overfull Graph Conjecture (Chetwynd
and Hilton, 1984; Chetwynd and Hilton, 1986; Hilton
and Johnson, 1987) states that G is Class 2 if and
only if it satisfies a property known as subgraph-
overfullness, which can be tested in polynomial time
(Padberg and Rao, 1982; Niessen, 1994; Niessen,
2001). Join graphs and connected cobipartite graphs
satisfy ∆> n/2 by definition, but no polynomial-time
algorithm is known for computing the chromatic in-
dex of all join or cobipartite graphs. Recall that all
bipartite graphs are Class 1 (Kőnig, 1916).

Except for complete graphs and odd cycles, which
have χ(G) = ∆+ 1, χ(G) 6 ∆ by Brooks’s Theorem
(Brooks, 1941). Therefore, χ′′(G) 6 2∆ + 2. The
Total Colouring Conjecture, proposed independently
by (Behzad, 1965) and (Vizing, 1968), states that
χ′′(G) 6 ∆ + 2 for every graph G. In view of that
χ′′(G) > ∆ + 1 by definition, graphs with χ′′(G) =
∆+1 and χ′′(G) = ∆+2 have been called Type 1 and
Type 2, respectively. This conjecture was proved for
some graph classes, such as the complete graphs and
the complete bipartite graphs (Behzad et al., 1967),
and graphs with ∆ > 3

4 n (Hilton and Hind, 1993). In
particular, the complete graph Kn is Type 1 if n is odd,
or Type 2 otherwise, and the complete bipartite graph
Kn1,n2 is Type 1 if n1 6= n2, or Type 2 otherwise (Be-
hzad et al., 1967). Recall that computing the total
chromatic number of a graph is NP-hard (Sánchez-
Arroyo, 1989), even if restricted to bipartite graphs
(McDiarmid and Sánchez-Arroyo, 1994).

A pullback from a graph G1 to a graph G2 is a
homeomorphism f : V (G1)→ V (G2) (i.e. a function
such that f (u) f (v) ∈ E(G2) for all uv ∈ E(G1)) in-
jective in NG1(u)∪{u} for all u ∈ V (G1). If there is
a pullback from G1 to G2, then χ′(G1) 6 χ′(G2) and
χ′′(G1)6 χ′′(G2) (de Figueiredo et al., 1999).

Now, let C be a set of colours, no matter how
many. Under an assignment of a list L(u) ⊆ C for
each u ∈ V (G), a vertex-list-colouring is a vertex-
colouring ϕ : V (G) → C such that ϕ(u) ∈ L(u) for
all u ∈ V (G). The graph G is said to be t-vertex-
choosable if it is vertex-list-colourable under any
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assignment of lists to the vertices with at least t
colours in each list. The least t for which G is t-
vertex-choosable is the vertex-choosability of G, de-
noted by ch(G). Analogously, under assignments
of lists to the edges, we define edge-list-colourings,
and the least t for which G is t-edge-choosable
is the edge-choosability of G, denoted by ch′(G).
Clearly, ch(G)> χ(G), ch′(G)> χ′(G), and χ′′(G)6
ch′(G)+2.

The Edge-List-Colouring Conjecture4 states that
ch′(G) = χ′(G) for every graph G. It is worthy
remarking that the similar statement concerning to
vertex-list-colourings is known to be false, since one
can construct a graph with χ(G) = 2 and ch(G) ar-
bitrarily large (Gravier, 1996), although it is true that
ch(G)6 ∆+1 (Vizing, 1976; Erdős et al., 1979). The
Edge-List-Colouring Conjecture has been shown only
for a few graphs, such as the bipartite graphs (Janssen,
1993; Galvin, 1995) and the Kn with n odd (Häggkvist
and Janssen, 1997) or n− 1 prime (Schauz, 2014).
For the Kn with n even and n−1 composite, it is only
known that ch′(Kn) 6 ∆(Kn)+ 1 = n (Häggkvist and
Janssen, 1997). Observe that the Kn is Class 1 if and
only if n is even, a standard result which can be found
e.g. in (Fiorini and Wilson, 1977).

2 COBIPARTITE GRAPHS

Throughout this section, G is a connected cobipar-
tite graph with V (G) = V1 ∪V2, wherein V1 and V2
are two disjoint cliques with |V1|=: n1 and |V2|=: n2.
Connectivity is assumed without loss of generality be-
cause the total chromatic number of a graph is the
maximum amongst the total chromatic numbers of its
connected components. Ergo, ∂G(V1) = ∂G(V2) 6= /0,
and we define BG := G[∂G(V1)] = G[∂G(V2)]. Note
that BG is bipartite.
Theorem 1. Let ∆B

i := maxu∈Vi dBG(u) for i ∈ {1,2}.
Then, χ′′(G)6max{n1,n2}+2(max{∆B

1 ,∆
B
2}+1).

Proof. Let C be a set with max{n1,n2}+ 2(∆B
1 + 1)

colours, assuming without loss of generality that ∆B
1 >

∆B
2 . We shall construct a total colouring ϕ for G using

the colours of C .
Step 1. Choose n1 colours from C and assign each

one of them to a vertex of V1.
Step 2. For each uv ∈ E(BG) with u ∈V1 and v ∈V2,

create the list L(uv) with any ∆(BG) colours of
C distinct from ϕ(u). As ∆(BG) = ch′(BG), by
(Galvin, 1995), we can assign to each uv a colour
of L(uv).

4For more on the origin and the history of this conjec-
ture, see (Jensen and Toft, 1994, Chapter 12).

Step 3. Now, for each v ∈ V2, the set X(v) of the
colours assigned to the neighbours of v in BG
and to the edges incident to v in BG has at most
2dBG(v) colours. Hence, if we take the list L(v) :=
C \X(v), we have
|L(v)|>max{n1,n2}+2(∆B

1 +1)−2∆B
2 > n2.

Since ch(Kn2) = n2 is a straightforward result, we
can assign to each v ∈V2 a colour of L(v).

Step 4. Finally, in order to complete ϕ, it remains
to colour the edges of E(G[V1])∪E(G[V2]). For
each uv amongst them, let X(uv) be the set of
the colours assigned to the vertices u and v and
to the edges of BG adjacent to uv in G. Define
then the list L(uv) := C \X(uv). Since |X(uv)|6
2∆B

1 + 2, |L(uv)| > max{n1,n2}. Thus, by the
result of (Häggkvist and Janssen, 1997) accord-
ing to which ch′(Kn) 6 n, we can assign to each
uv ∈ E(G[V1])∪E(G[V2]) a colour of L(uv).
Because all the colourings taken in the proof of

Theorem 1 can be obtained in polynomial time, our
proof is a polynomial-time algorithm to construct a
(max{n1,n2}+2(max{∆B

1 ,∆
B
2}+1))-total colouring.

Recall that ∆(G) = max{n1 − 1 + ∆B
1 ,n2 − 1 + ∆B

2},
which means that the upper bound provided in The-
orem 1 is better than the bounds for general graphs
listed in Section 1, as long as ∆B

1 and ∆B
2 are not too

large, in the sense that the propositions below clarify.
Proposition 2. If

max{∆B
1 ,∆

B
2}6

min{n1,n2}
2

−1,

then max{n1,n2} + 2(max{∆B
1 ,∆

B
2} + 1) is strictly

less than |V (G)|+ 1, the upper bound for χ′′(G) by
(Behzad et al., 1967).
Proof. max{n1,n2}+2(max{∆B

1 ,∆
B
2}+1)

6max{n1,n2}+min{n1,n2}
= n1 +n2 < |V (G)|+1.

Proposition 3. If
max{∆B

1 ,∆
B
2}6 5×1025−2,

then max{n1,n2} + 2(max{∆B
1 ,∆

B
2} + 1) is strictly

less than ∆(G)+1026, the upper bound for χ′′(G) by
(Molloy and Reed, 1998).
Proof. max{n1,n2}+2(max{∆B

1 ,∆
B
2}+1)

6max{n1−1+∆B
1 ,n2−1+∆B

2}+1026−2
< ∆(G)+1026

Proposition 4. If

max{∆B
1 ,∆

B
2}6

√
max{n1,n2}−

3
2
,

then max{n1,n2} + 2(max{∆B
1 ,∆

B
2} + 1) is strictly

less than χ′(G) + 2
√

χ(G), the upper bound for
χ′′(G) by (Hind, 1990).
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Proof. max{n1,n2}+2(max{∆B
1 ,∆

B
2}+1)

6 ∆(G)+2
√

max{n1,n2}−1

< ∆(G)+2
√

χ(G)6 χ′(G)+2
√

χ(G).

Proposition 5. If

max{∆B
1 ,∆

B
2}6 4

(
ln(max{n1 +∆B

1 ,n2 +∆B
2})
)8− 3

2

then max{n1,n2} + 2(max{∆B
1 ,∆

B
2} + 1) is strictly

less than ∆(G) + 8(ln∆(G))8, the upper bound for
χ′′(G) by (Hind et al., 2000).

Proof. max{n1,n2}+2(max{∆B
1 ,∆

B
2}+1)

6 ∆(G)+8(ln(∆(G)))8−1.

3 JOIN GRAPHS

Throughout this section and the next, G is the join
of two disjoint graphs G1 and G2 with, respectively,
n1 and n2 vertices and maximum degrees ∆1 and ∆2.
Now, BG denotes the complete bipartite graph G−
(E1∪E2). For simplicity, we write χ1 := χ(G1), χ′2 :=
χ′(G2) etc. Note that ∆(G) = max{∆1 +n2,∆2 +n1}.
Theorem 6. Let

P(G1,G2) := min{∆1 +∆2 +1,max{χ′1,χ′′2}}. (1)

Then, χ′′(G)6max{n1,n2}+1+P(G1,G2).

Proof. Let t := max{n1,n2}+1+P(G1,G2) and take
two disjoint sets CA and CB with, respectively, χ1
and max{χ′1,χ′′2} colours. As it can be straightfor-
wardly verified that |CA|+ |CB|6 t, take a set C with
t colours having CA and CB as subsets. We shall con-
struct a total colouring ϕ : V (G)∪E(G)→ C .

Step 1. Take a χ1-vertex-colouring of G1 using only
the colours of CA.

Step 2. Take a χ′1-edge-colouring of G1 and a χ′′2-
total colouring of G2, both using only the colours
of CB. Since CA and CB are disjoint, no colour
conflict has been created.

Step 3. Now, for each edge uv ∈ BG, with u ∈V1, let
X(uv) be the set of the colours assigned to the ver-
tices u and v and to the edges of G1∪G2 adjacent
to uv in G. It is clear that |X(uv)|6 1+P(G1,G2).
Define then the list L(uv) := C \ X(uv). Since
|L(uv)| > t − 1− P(G1,G2) = max{n1,n2} and
ch′(BG)=max{n1,n2} (Galvin, 1995), we can as-
sign to each uv ∈ E(BG) a colour of L(uv).

Remark in Theorem 6 that, from the definition of
P(G1,G2) in (1), the choice of the graphs for the roles
of G1 or G2 may lead to a better or a worse upper
bound. Moreover, if P(G1,G2) is known, or if it can

be computed in polynomial time, then our proof is a
polynomial-time algorithm, provided that the under-
lying colourings are also known or can be computed.
Replacing P(G1,G2) by some upper bound on it, such
as ∆1 +∆2 +1, also makes our algorithm polynomial.

Similar to the bound for the cobipartite graphs, the
upper bound presented in Theorem 6 is better than
the upper bounds for general graphs listed in Section
1 if P(G1,G2) is not too large, in the sense that the
propositions below clarify.

Proposition 7. If P(G1,G2) 6 min{n1,n2}− 1, then
max{n1,n2}+1+P(G1,G2)< |V (G)|+1.

Proof. max{n1,n2}+1+P(G1,G2)

6max{n1,n2}+min{n1,n2}= |V (G)|.
Proposition 8. If P(G1,G2) 6 1026 − 1, then
max{n1,n2}+1+P(G1,G2)< ∆(G)+1026.

Proof. max{n1,n2}+1+P(G1,G2)

< max{n1 +∆2,n2 +∆1}+1026.

Proposition 9. If P(G1,G2) 6 2
√

χ1 +χ2− 1, then
max{n1,n2}+1+P(G1,G2)< χ′(G)+2

√
χ(G).

Proof. max{n1,n2}+1+P(G1,G2)

< max{n1 +∆2,n2 +∆1}+2
√

χ1 +χ2

6 χ′(G)+2
√

χ(G).

Proposition 10. If

P(G1,G2)6 8
(
ln(max{n1 +∆B

1 ,n2 +∆B
2})
)8−1,

then max{n1,n2}+1+P(G1,G2) is strictly less than
∆(G)+8(ln∆(G))8.

Proof. max{n1,n2}+1+P(G1,G2)

< max{n1 +∆2,n2 +∆1}+8(ln∆(G))8.

4 IMPROVING THE BOUND FOR
JOIN GRAPHS

Following (Simone and de Mello, 2006), we denote
by GM the graph (G1∪G2)+M for any perfect match-
ing M on BG. Inspired by an observation in the same
work, we show how the upper bound of Theorem 6
may be lowered in some cases. In the statements, as
it is usual for functions f : A→ B, we denote by f (X)
the set

⋃
x∈X f (x) for all X ⊆ A.

Theorem 11. Let ϕ be a total colouring of GM for
some perfect matching M on BG. If the sets ϕ(V1) and
ϕ(E1∪M∪V2∪E2) are disjoint and

|ϕ(E1∪M∪V2∪E2)|6max{χ′1,χ′′2}6 ∆1 +∆2 +3,

then χ′′(G)6max{n1,n2}+max{χ′1,χ′′2}.
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Proof. Let C be a set with t := max{n1,n2} +
max{χ′1,χ′′2} colours having CA := ϕ(V1) and CB :=
ϕ(E1 ∪M ∪V2 ∪E2) as subsets. In order to obtain a
t-total colouring of G using the colours of C , we start
with the total colouring ϕ of GM , remaining to colour
only the edges of BG−M.

We proceed now as in Step 3 of the proof of The-
orem 6. For each edge uv ∈ BG−M, with u ∈ V1, let
X(uv) be the set of the colours assigned to the vertices
u and v and to the edges of GM adjacent to uv in G.
Clearly

|X(uv)|6 1+min{∆1 +∆2 +3,max{χ′1,χ′′2}}
= 1+max{χ′1,χ′′2}.

Therefore, if we define the list L(uv) := C \ X(uv),
we have |L(uv)| = max{n1,n2}− 1 = ∆(BG). Since
∆(BG) = ch′(BG) (Galvin, 1995), we can assign to
each uv ∈ E(BG) a colour of L(uv).

Corollary 12. If G has a total colouring ϕ of
GM , for some perfect matching M on BG, sat-
isfying the preconditions of Theorem 11, and if
max{n1,n2}+max{χ′1,χ′′2}6max{n1 +∆2 +2,n2 +
∆1 + 2}, then the Total Colouring Conjecture is true
for G, i.e. χ′′(G)6 ∆(G)+2.

Theorem 13. If there is a graph G3 such that

1. max{χ′′3 ,∆3 +2}6 ∆1 +∆2 +3,
2. there are a pullback f13 from G1 to G3 and a pull-

back f23 from G2 to G3, and
3. there is a perfect matching M on BG such that, for

all uv ∈M with u ∈V1, f13(u) = f23(v),

then χ′′(G)6max{n1,n2}+max{χ′′3 ,∆3 +2}.
Proof. Let CA be a set with χ1 colours and take any
optimal vertex-colouring of G1. Let CB be a set with
max{χ′′3 ,∆3 +2} colours, disjoint from CA, and ψ be
a total colouring of G3 using the colours of CB. By
(de Figueiredo et al., 1999), the function ϕ1 : E1→CB
defined by

ϕ(uv) = ψ( f13(u) f13(v)), ∀uv ∈ E1,

is a proper edge-colouring of G1, as the function
ϕ2 : V2∪E2→ CB defined by

ϕ(u) = ψ( f23(u)), ∀u ∈V2,

ϕ(uv) = ψ( f23(u) f23(v)), ∀uv ∈ E2,

is a proper total colouring of G2. Since it is clear that
max{χ′′3 ,∆3 + 2} > ∆3 + 1, at least one colour αx ∈
CB is missing at each x ∈ V3, i.e. αx is not the colour
assigned by ψ to x nor to any edge incident to x. Ergo,
for all uv ∈M with u ∈V1, the colour α f (u) is missing
at both u and v and thence can be assigned to uv. This

yields a (max{χ′′3 ,∆3 + 2})-total colouring ϕ of GM
with ϕ(V1) and ϕ(E1∪M∪V2∪E2) disjoint and

|ϕ(E1∪M∪V2∪E2)|6max{χ′′3 ,∆3 +2}
6 ∆1 +∆2 +3.

The rest of the proof follows as the proof for
Theorem 11, but with max{χ′′3 ,∆3 + 2} instead of
max{χ′1,χ′′2}.
Corollary 14. If there is a graph G3 satisfying the
preconditions of Theorem 13, and if max{n1,n2}+
max{χ′′3 ,∆3 + 2} 6 max{n1 +∆2,n2 +∆1}+ 2, then
the Total Colouring Conjecture is true for G.

Theorem 15 and Corollary 16 below deal with
the joins of unitary interval graphs. Unitary interval
graphs are also known as indifference graphs, whose
edge-colourings have been studied by (de Figueiredo
et al., 1997; de Figueiredo et al., 2000; de Figueiredo
et al., 2003), with some partial results been found.

Theorem 15. If G1 and G2 are indifference graphs,
then χ′′(G)6max{n1,n2}+max{∆1,∆2}+2.

Proof. The proof follows from Theorem 13 by taking
G3 := Kmax{∆1,∆2}+1. By (de Figueiredo et al., 1997),
there is a pullback from any indifference graph D on
k vertices to the K` for any ` > k (de Figueiredo et al.,
1999), and, moreover, if 0, . . . ,k−1 is an indifference
order of D, a pullback can be given by the function
f (i) = i mod `, under V (K`) = {0, . . . , `− 1}. There-
fore, back to our join graph G, it is clear that a match-
ing M on BG satisfying the requirements of Theorem
13 can be taken.

Corollary 16. If G1 and G2 are indifference graphs,
and if n1 = n2 or ∆1 = ∆2, then the Total Colouring
Conjecture is true for G.

5 FUTURE WORKS

In order to obtain a total colouring, the algorithms
presented in the proofs of Theorems 1 and 6 decom-
pose the input graph and, considering the parts of the
decomposition in an appropriate order, work with the
solutions for other colouring problems for each part.
All these problems are hard combinatorial optimisa-
tion problems, and we hope further investigation on
them considering the restricted cases of the graphs ob-
tained by our decompositions can lead to better upper
bounds for the total chromatic number of join and co-
bipartite graphs. We also encourage future works to
investigate other decompositions.

Theorem 15 and Corollary 16 form an example of
how Theorem 13 can be applied in order to prove the
Total Colouring Conjecture for a noteworthy subclass
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of join graphs. Similar results could also be obtained
for other subclasses, such as the joins of graphs with
no more than max{∆1,∆2}+ 1 per connected com-
ponent, since a pullback from each component to the
Kmax{∆1,∆2}+1 could be easily obtained. We encourage
future works to investigate more applications.
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