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Abstract: This paper presents two edge bundling optimization problems that address minimizing the total number of
bundles, in conjunction with other aspects, as the main goal. A novel evolutionary edge bundling algorithm for
these problems is described. The algorithm was successfully tested by solving two related problems applied
to real-world instances in reasonable computational time. The development and analysis of optimization
models have received little attention in the area of edge bundling. However, the reported experimental results
demonstrate the effectiveness and the applicability of the proposed evolutionary algorithm to help resolve edge
bundling problems formally defined as optimization models.

1 INTRODUCTION

A graph is a mathematical structure for represent-
ing inherent relationships between objects. It is of-
ten drawn as a node-link diagram but, as the number
of elements increases, its ability to effectively display
information, without visual clutter, is a challenge.

Several existing graph drawing techniques attempt
to reduce visual clutter. An example is edge bundling,
which has gained attention as a way to improve the
readability of a graph drawing by merging geometri-
cally close edges into bundles along a shared path.

Traditional edge bundling approaches are
not problem-specific methods but instead, are
application-oriented. They are not dedicated to solve
a mathematically-formulated problem, i.e., they do
not follow a systematic and theory-guided process
to propose and solve edge bundling optimization
problems by defining decision variables and a given
objective function to be optimized.

The consequence is that those approaches do not
address the issue of identifying the “best” set of bun-
dles based on a group of criteria that are mathemati-
cally defined in the form of an objective function.

Conversely, in a previous paper (Ferreira et al.,
2017), edge bundling was formally defined and in-
vestigated as an optimization problem for the first
time. Specifically, it was formulated as a constrained
combinatorial optimization problem in which the to-
tal number of bundles is to be minimized and only
edges with a common node1 can be bundled together.

1Edges with a common node are termed “adjacent” and

The problem of bundling only adjacent edges appears
to provide a better sense of proximity between edges
and nodes and has been shown to be NP-hard. A
more advanced problem was also defined by impos-
ing a maximum angle (α) constraint between any pair
of adjacent edges to be bundled. Therefore, the prob-
lem became minimizing the number of edge bundles
while respecting the α-angle constraint. It is termed
the Angle-Based Edge Bundling Problem (ABEB).
Ferreira et al. (2017) highlights how complex and rel-
evant edge bundling optimization is.

In the present paper, we continue the investigation
into the formal modeling of edge bundling and pro-
pose a third problem. The new problem is denoted
as the Compatibility-Based Edge Bundling Problem
(CBEB) and it involves minimizing the total number
of bundles while maximizing a multi-objective func-
tion that incorporates well-known edge compatibil-
ity measures. We also propose an approximate evo-
lutionary algorithm, called here Evolutionary Edge
Bundling (EEB), for ABEB and CBEB. As far as we
know, EEB is the first heuristic method ever proposed
for these problems2.

Experiments with the evolutionary algorithm
show that it produces close-to-optimal solutions for
some of the nontrivial ABEB instances tested. The
results reinforce the importance of optimization ap-
proaches for edge bundling, not only as a way of vi-
sualizing a graph with less visual clutter, but also as a

those without are termed “nonadjacent’.
2 Ferreira et al. (2017) presented only an integer linear

formulation for the ABEB, not a solution method.
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way of systematically studying and comparing prob-
lem definitions, methods and solutions in this field.
From now on, we consider only undirected graphs.

The remainder of the paper is organized as fol-
lows. Section 2 briefly surveys relevant work on var-
ious aspects of edge bundling. Section 3 presents a
definition of edge bundling as a combinatorial op-
timization problem, as proposed in (Ferreira et al.,
2017). Some compatibility and aesthetic criteria used
as constraints and as part of the objective function of
our problems are then discussed in Section 4. Sec-
tion 5 provides the formal definitions of ABEB and
CBEB. Section 6 introduces the evolutionary edge
bundling algorithm aimed at solving these two prob-
lems and Section 7 describes the experimental results.
Section 8 discusses a method (EEB) for rendering the
edge bundling solutions as a final step of the edge
bundling process. A comparison of EEB with pre-
vious edge bundling techniques is discussed in Sec-
tion 9. Finally, in Section 10, we draw some conclu-
sions and discuss ideas for future research.

2 RELATED WORK

The scientific literature on edge bundling is exten-
sive and reports many edge bundling techniques. For
instance, the approach developed by Holten (2006),
called hierarchical edge bundling, uses hierarchy tree
branches for edge routing; in (Cui et al., 2008), a
method called geometric edge bundling forms bun-
dles by routing edges along a mesh generated by
a triangulation algorithm; the force-directed edge
bundling technique (Holten and van Wijk, 2009; Se-
lassie et al., 2011) splits the edges into segments that
attract each other as a basis for bundling edges; the
skeleton-based edge bundling method (Ersoy et al.,
2011) generates a skeleton from the medial axes of
groups of similar edges, and then attracts edges to
this skeleton; and the kernel density estimation edge
bundling method (Hurter et al., 2012) computes a den-
sity map and moves the edges in the gradient direction
of where the bundles will be formed.

Those and many other edge bundling techniques
attempt to aggregate edges with similar properties
into bundles, addressing mainly the question of spec-
ifying how these edges should be routed along the
same path. The techniques produce solutions in
which the coarse structure of the graph is revealed
but fail to show connection patterns at the node level.
Peng et al. (2012) affirm that sometimes, it is more
important to show the connection trends of a node
rather than the overall network structure. For ex-
ample, in graph drawings representing a route net-

work, the actual relationships between interconnected
components are usually more relevant than the coarse
structure of the graph. This happens because many
traditional edge bundling methods generate bundles
that have common interior segments and multiple
source and destination nodes, i.e., they “knot” the
edges in the middle of the bundle.

Consequently, Peng et al. (2012) proposed an al-
gorithm called node-based edge bundling that bun-
dles and “knots” edges nearer to the common node
of adjacent edges. Nocaj and Brandes (2013) refined
the technique of (Peng et al., 2012) and proposed a
method called stub bundling that joins only edges that
share the same endpoint with the aim of visualizing
unambiguous graphs and retrieving the exact source
and target of each edge. Their method uses the angle
between consecutive edges as the criterion for choos-
ing which edges to be joined together.

Even though the methods of Peng et al. and No-
caj and Brandes efficiently produce bundles with only
adjacent edges, neither of them has the aim of explic-
itly minimizing the number of bundles. In order to
achieve this goal, the formulation of an optimization
problem is required, defining decision variables, con-
straints and objectives. In order to address the afore-
mentioned need, the present paper investigates the
problem of finding the “best” configuration of bun-
dles (involving only adjacent edges) that maximizes a
given objective function.

3 EDGE BUNDLING AS AN
OPTIMIZATION PROBLEM

There is a present lack of fundamental and theoretical
principles that can be used to objectively measure the
effectiveness of bundling techniques. Despite some
attempts to formalize the presentation of certain edge
bundling methods, bundling itself, as a technique, as
yet lacks an underlying formalism that can unify pre-
vious methods. Most existing edge bundling defini-
tions are vague, each related to slightly different char-
acteristics of the problem. Moreover, edge bundling
is related to both joining edges and determining the
paths of the edges.

Recently, McKnight (2015) and Lhuillier et al.
(2017) have discussed those complementary aspects
when presenting more complex mathematical formu-
lations of edge bundling. McKnight defines a bun-
dle as a set of two or more “edge segments”, and
edge bundling as the decision of how to segment the
edges. Lhuillier et al. (2017) define a bundle as a set
of paths that share similarities and edge bundling as
the method that creates bundles and trails.
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McKnight (2015) affirms that many existing edge
bundling approaches do not generate bundles directly.
In fact, for most edge bundling algorithms, the out-
put is just a graph drawing and the search for a good
layout is a heuristic based on an informal or implicit
definition of the desirable optimization goals.

Consequently, we take a different direction by for-
mally defining edge bundling as an optimization prob-
lem. We also aim at a solution that has a bundle con-
figuration as an output. For the structure of the solu-
tion, we follow the definition given by McKnight that
focus on computing bundles directly, but we consider
a bundle as a set of edges (not a set of edge segments
as McKnight does).

Thus, in (Ferreira et al., 2017), edge bundling was
formulated as an optimization problem that attempts
to find the “best” set of bundles in terms of some given
parameters, goals and constraints. A general edge
bundling optimization problem, that can be used as
a framework for describing more specific problems,
was defined as follows:

Definition 1. Let G=(V,E) be a graph and D a given
unbundled node-link drawing of G in the plane. Con-
sider S = (E1,E2, ...,En) a partition of E (not nec-
essarily disjoint), n ∈ N+. Further, let R be a func-
tion that takes G, D and S, and renders a bundled
graph drawing version of D called DR, given some
extra necessary information, such as rules for rout-
ing the edges. The general edge bundling problem is
hence to determine the partition S (here called bun-
dles), with E = ∪n

i=1Ei, so that, a set F of objective
functions, representing aesthetic edge bundling mea-
surements of DR, are optimized (minimized or max-
imized), and a set P of constraints (defining mainly
which edges can be bundled together) are satisfied.

Note that Definition 1 enables the inclusion of the
routing problem3 as a question to be addressed by
the optimization problem. This can be done in two
ways: (1) by solving the routing as a second-level
problem totally inside the rendering function R; or (2)
by extending the formal definition in order to have
extra variables that determine the routing and that are
used in R. In both cases, functions that evaluate the
quality of the resultant edge-bundling drawings, pro-
duced by R, can be included in the set F , making the
edge-routing problem more intrinsic to the optimiza-
tion process. Some quality aspects that may influence
the routing, such as minimizing the amount of ink
for drawing the bundles, or minimizing the amount
of edge crossings, can be pursued using these ap-
proaches. However, in the present paper, the routing

3Defining the precise paths on which the bundled and
possibly the unbundled edges travel through.

problem is not considered critical for the optimization
process. Therefore, it was treated as a fully indepen-
dent problem (see (1) above) and was considered an
external, post-processing stage (see Section 8).

4 COMPATIBILITY AND
AESTHETICS

The terms “compatibility” and “aesthetics” suggest
preferable features that a layout should possess, in or-
der to help to reduce visual clutter. These features are
important aspects of the EEB framework, since they
determine the constraints and objectives of the prob-
lems being investigated. In the next two subsections,
some measures used in the evolutionary algorithm for
obtaining such features are detailed, and some aes-
thetics for edge bundling are discussed.

4.1 Compatibility Measures

Generally, edge bundling techniques decide which
edges will be bundled together (Holten and van Wijk,
2009; Nguyen et al., 2011). The proposed evolution-
ary formulation focuses on two measures introduced
by Holten and van Wijk (2009)4: Angle compati-
bility, Ca ∈ [0,1], that avoids joining perpendicular
edges; and Scale compatibility, Cs ∈ [0,1], which
prevents joining edges that differ in length. The to-
tal compatibility, C ∈ [0,1], between two edges is
C =Ca×Cs.

4.2 Aesthetics for Edge Bundling

A graph drawing method usually tries to produce
drawings that are considered visually pleasing, ac-
cording to specific aesthetic criteria, for example,
minimizing the number of edge crossings or maxi-
mizing the number of symmetries, etc (Battista et al.,
1998). However, most of the known heuristics for
edge bundling are not necessarily involved with the
exploration and evaluation of the quality of a drawing
with respect to such aesthetics.

There are few reported attempts to incorporate
and optimize aesthetic criteria in edge bundling lay-
outs. Recently, Angelini et al. (2016) restricted edge
bundling to the end segments of edges and allowed at
most one crossing per bundle. Alam et al. (2016) pro-
posed a formulation focused on minimizing the num-
ber of bundled crossings for circular graphs but no

4 Holten and van Wijk (2009) proposed two other mea-
sures, position and visibility, but they were not explicitly
employed in our approach because they are covered by the
adjacency constraint.
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proof of its NP-completeness, nor an approximation
algorithm were presented. Saga (2016) proposed two
measures to quantitatively evaluate edge bundling:
edge lengths and area occupation. The effectiveness
of those measurements was not discussed.

We believe that, besides reducing the clutter,an
edge bundling technique could potentially improve
the readability of a graph drawing if it was con-
structed to optimize one or more aesthetic criteria
related to the bundling structure. As a result, edge
bundling could possibly be formalized as a multi-
objective optimization problem, where the layout is
generated according to a given set of aesthetics. We
propose and attempt to implement strategies for some
of the following edge bundling aesthetic criteria:

(i) minimizing the total number of bundles;

(ii) maximizing the compatibility of bundled edges;

(iii) maximizing the number of edges per bundle;

(iv) minimizing the ambiguity of the edges;

(v) maximizing the axial symmetry of the bundles;

(vi) minimizing the total number of crossings between
edges and/or bundles.

5 EDGE BUNDLING PROBLEMS

In this paper, two edge bundling problems are inves-
tigated that tightly combine Definition 1 with some
aesthetics and compatibility measures.

Problem 1 (Angle-Based Edge Bundling Problem
(ABEB)). Given a drawing D of a graph G= (V,E),
a function γe jek that returns the smaller angle5 be-
tween any pair of adjacent edges e j and ek from E in
the drawing, and an angle α, 0≤ α≤ 180◦, the ABEB
problem6 is to determine a partition of E into disjoint
subsets E1,E2, . . . ,En, E = ∪n

i=1Ei, that minimizes n,
subject to each Ei inducing a star subgraph Gi (i.e,
all edges in Ei share a same node), and γei jeik ≤ α for
every two edges ei j, eik ∈ Ei.

ABEB is the original problem proposed in (Fer-
reira et al., 2017). Note that a set Ei represents a bun-
dle containing only adjacent edges, and that each edge
of the graph appears in exactly one bundle.

For a given input graph drawing, there may be
many solutions with the same number of bundles and

5We define the smaller angle as the lesser angle be-
tween two adjacent edges with regard to the clockwise and
counter-clockwise orientations between the edges.

6The original name of this problem is EB−starα but, for
the sake of clarity, it will be called ABEB here.

satisfying the angle constraints, but with a different
composition of the sets E1,E2, . . . ,En. In order to
distinguish between these solutions, the additional
objective of maximizing the compatibility value be-
tween edges is added to the original ABEB. The aim
is to produce solutions in which the edges in Ei are as
compatible as possible. The precise definition of this
new problem is given below.

Problem 2 (Compatibility-Based Edge Bundling
Problem (CBEB)). Let D be a drawing of a graph
G = (V,E). For D, let C(a,b) be the compatibil-
ity measure between each pair of edges a,b ∈ E
(as previously defined in Section 4.1), and CEi =
∑p,q∈Ei C(p,q) the total compatibility of a bundle Ei,
defined as the sum of C for all pairs of edges in the
bundle. The CBEB problem is to determine a partition
of E into disjoint subsets E1,E2, . . . ,En, E = ∪n

i=1Ei,
that maximizes CG = ∑n

i=1 CEi and minimizes n, sub-
ject to each Ei inducing a star subgraph Gi.

Thus, CBEB has two objectives: to maximize the
sum of the compatibilities of the edge bundles and
to minimize the number of edge bundles. These ob-
jectives may balance each other out when finding a
minimal set of bundles. For the purpose of simpli-
fication, CBEB was converted into a single-objective
problem aimed at maximizing the following weighted
sum function:

f = w1×CG +w2×
1
n

(1)

where 0≤ wi ≤ 1, i = 1,2.
Note that the angle limit α is not a constraint of

the problem any more, but angle compatibility is part
of the objective function, embedded in CG.

6 EVOLUTIONARY EDGE
BUNDLING (EEB)

One of the challenges of dealing with difficult com-
binatorial optimization problems is to develop algo-
rithms that guarantee to find a reasonably good solu-
tion in an acceptable computational time. A technique
that has frequently been able to address this challenge
successfully in many situations is so-called evolution-
ary computation, a generic population-based approx-
imate metaheuristic optimization algorithm from arti-
ficial intelligence. An evolutionary algorithm (Bäck,
1996) (EA) is a subset of evolutionary computation,
An EA uses mechanisms inspired by biological evolu-
tion, such as reproduction, mutation, recombination,
and selection.
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Following that line, we present a novel EA for the
edge bundling problems ABEB and CBEB. The algo-
rithm adopts the standard evolutionary cycle involv-
ing population initialization, evaluation, selection, re-
combination and mutation steps. The next subsec-
tions describe the solution representation and details
of the steps of the algorithm.

6.1 Representation Scheme

Given a graph G = (V,E), the representation of an
edge bundling solution (also called here an individ-
ual of a population) for ABEB (or CBEB) is simply
I = (E1, E2, . . ., En), that is, the sets of bundles of
edges Ei ⊂ E (1 ≤ i ≤ n), 1 ≤ |Ei| ≤ |E|. The cardi-
nality of individuals is variable, but cannot exceed a
given maximum cardinality, n ≤ |E|. Constraint sat-
isfaction is an integral part of the concept of a genetic
operator. Therefore, we assume that the sets Ei are
disjoint and that E = ∪n

i=1Ei as specified by ABEB
(CBEB). Figure 1 illustrates the representation of a
simple bundled graph with four bundles E1,E2,E3 and
E4. The bundle E1, for example, is composed of the
edges 1,2 and 3. The routing of the edges and other
visual aspects of the bundling are not included in our
current solution representation. These elements are
treated automatically by a rendering function at the
last stage of the edge bundling process.

1, 2, 3 4, 5 6, 7, 8 9, 10
E1 E2 E3 E41 2

3

4
5

8

7
6

9

10

Bundled Graph Representation

Figure 1: Individual representation scheme.

6.2 Fitness Function

The quality of each individual is evaluated according
to a fitness function. This function is simply a max-
imization version of the objective function required
to be optimized in either ABEB or CBEB (see Sec-
tion 5). For the CBEB case, an adaptation was done
via the f function, in order to further penalize solu-
tions with bundles having very low compatibility val-
ues. For this, the thresholds Ta and Ts were defined,
representing lowest acceptable values for Ca and Cs
respectively. Then, for the pair of edges p,q ∈ Ei that
induces the smallest compatibility C(p,q) among all
other pairs in Ei, if Ca(p,q)< Ta or Cs(p,q)< Ts then
CEi is set to -1.

6.3 Initialization

In order to explore the search space at points that
are distributed as evenly as possible, two methods
for generating the initial population were devised.
The first method is a heuristic method based on solu-
tions for the minimum vertex cover problem (Skiena,
1990), while the second algorithm selects the initial
population randomly using pseudo-random numbers.
Each method generates half of the initial population.

In the first strategy, a minimal vertex cover set A
of V is generated by a heuristic process. Then, each
node v ∈ A is considered as the center of an induced
star subgraph in G. Finally, edge bundling sets are
created, each one taking edges from a randomly cho-
sen star subgraph. The edges that comprise a bun-
dle are also chosen at random, but only compatible
edges, (relative to a given threshold) can be joined
together. For the ABEB and CBEB problems, the
threshold represents the maximum value of the de-
sired constraints (maximum angle and/or minimum
compatibility measures). This approach was found to
be effective, usually generating individuals near the
optimal solution (related to the number of bundles) for
populations of large size. However, preliminary ex-
periments also showed that a population created using
only this method can lead to premature convergence.

In order to address the problem of premature con-
vergence, the other strategy initializes the second half
of the population randomly. It creates individuals by
randomly choosing adjacent edges to create bundles,
while still ensuring feasibility and threshold satisfac-
tion. As a consequence, this method can produce un-
interesting individuals but it facilitates an increase in
population diversity.

After an individual is generated, both strategies
enable bundles to be shuffled in their positions. This
improves the efficiency of the crossover operator, cre-
ating more interesting random individuals and also
preventing premature convergence.

If any individual is found duplicated, a removal
function is used to replace or discard it. We use the
approach of Saroj (2012) in which any duplicated in-
dividual is replaced probabilistically with a mutated
version of the best individual presented in the popula-
tion. After applying a test, if the individual is still du-
plicated, then it is discarded. A checksum (based on
the number of bundles, on the edges present in each
bundle, and on the fitness) is used to quickly check
the solution. The checksum is invariant with regard to
the position of the bundles in the representation.
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6.4 Selection

The strategy used for randomly selecting individu-
als for recombination is tournament selection with re-
placement. In addition, after recombining two indi-
viduals and mutating their two offspring, the steady
state is applied, where the offspring produced com-
pete for survival against the members of the current
population. This is done by inserting the newborn
offspring in the current population and removing the
worst two individuals. After repeating this process
t times, where t is the number of individuals in the
population, the best individual of the last generation
is propagated to the new one, if it has a higher fitness.
If this happens, the best individual randomly replaces
a solution in the resultant population.

6.5 Crossover Operator

The one-point and two-point classic methods are ap-
plied (they are chosen randomly each time) to pro-
duce the recombination of the parental sets of bun-
dles. This is accomplished by swapping the list of
bundles of two parents in order to create a new ran-
dom set I, representing two new individuals. First,
the crossover points are selected. In the one-point
crossover, the selected point is at the middle part of
the smallest parent (the smallest n value divided by
two). The right-hand side of the parents are then
swapped (see Figure 2). In the two-point crossover,
the points are also defined by the size of the smallest
individual, dividing it in three equall-sized parts. The
middle parts are then swapped.

During the crossover process, infeasible offspring
(that violate the disjoint-set constraint or do not cover
all edges) may be produced and need to be repaired.
Thus, the latest occurrence of duplicated edges are re-
moved and missing edges are inserted in new solitary
bundles in the final solution representation. This is il-
lustrated in Figure 2, where edge 2 was removed from
bundle E4 in Offspring-1, and the same edge was in-
serted in a new bundle in Offspring-2.

6.6 Mutation Operators

The mutation operators specified for EEB are:

• Join mutation randomly selects two solitary bun-
dles and merges them if their edges are adjacent.

• Merge mutation is similar to Join mutation. The
difference is that it works with bundles of any size
and only the first bundle is chosen at random. The
other merged bundle is the first compatible one
found by a sequential search in the representation
of the individual.

1, 2 3, 5 6, 7, 8 4, 9, 10
E1 E2 E3 E4

Offspr ing 1

1, 5 3 4, 6, 7, 8 9, 10
E1 E2 E3 E5

Offspr ing 2

2
E4

1, 2 3, 5 4, 6, 7, 8 9, 10
E1 E2 E3 E4

1, 5 3 6, 7, 8 2, 4, 9, 10
E1 E2 E3 E4

Parent 2

Parent 1

Figure 2: A example of one point crossover operation.

• Split mutation replaces a randomly chosen bun-
dle by dividing it into two subbundles.

• Move mutation randomly selects a bundle and
moves one of its edges to another the first com-
patible bundle found.

• Remove mutation randomly removes an edge
from a bundle of size greater than one and creates
a new solitary bundle with that edge.

The mutation operation to be used is chosen at
random each time. There is also a constant proba-
bility of applying it.

7 EXPERIMENTAL RESULTS

Experiments for testing our approach EEB were con-
ducted with one synthetic graph and eight real-world
graphs. The graphs are: Synthetic (G1 – 20 nodes,
28 edges) (Ferreira et al., 2017), ZacharyClub (G2 –
34 nodes, 78 edges) (Zachary, 1977), PlanarGD2015
(G3 – 66 nodes, 101 edges) (ISGCI, 2015), Dolphin
(G4 – 62 nodes, 160 edges) (Girvan and Newman,
2002), a connected version of MovieLens (G5 – 160
nodes, 161 edges) (MovieLens, 2017), LesMiserables
(G6 – 77 nodes, 254 edges) (Knuth, 1993), Book-
sUSPolitics (G7 – 105 nodes, 401 edges) (Newman,
2006), Flare Software Class (G8 – 220 nodes, 709
edges) (Holten, 2006) and the USAirline (G9 – 235
nodes, 1297 edges) from an unknown source.

We executed two sets of experiments, one for each
of the ABEB and CBEB problems discussed in Sec-
tion 5. The initial layout of the graphs with fixed
nodes was predefined in an input file. The exper-
iments consisted of running the evolutionary algo-
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Table 1: Results for the ABEB problem, averaged over 100 independent runs, u = 150, pc = 0.98 and pm = 0.4.

Graph Edges α(◦) Bundles of Avg. Avg. Std. dev. Std. error Avg.
best solution bundles fitness fitness fitness time (s)

G1 28
30 17 (100) 17.00 0.0588 0.00000 0.000000 2
45 16 (100) 16.00 0.0625 0.00000 0.000000 1
70 13 (89) 13.11 0.0763 0.00173 0.000173 1

G2 78
30 45 (1) 49.74 0.0201 0.00073 0.000073 6
45 37 (3) 39.75 0.0252 0.00081 0.000081 6
70 31 (6) 33.30 0.0301 0.00101 0.000101 5

G3 101
30 75 (4) 76.84 0.0130 0.00015 0.000015 9
45 69 (1) 73.01 0.0137 0.00023 0.000023 9
70 60 (4) 62.63 0.0160 0.00028 0.000028 9

G4 160
30 107 (4) 111.08 0.0090 0.00019 0.000019 20
45 92 (6) 96.57 0.0104 0.00026 0.000026 19
70 75 (2) 79.48 0.0126 0.00032 0.000032 18

G5 161
30 65 (2) 69.28 0.0144 0.00028 0.000028 11
45 51 (1) 54.17 0.0185 0.00050 0.000050 11
70 37 (1) 40.84 0.0245 0.00085 0.000085 10

G6 254
30 121 (4) 128.23 0.0078 0.00022 0.000022 156
45 99 (1) 107.13 0.0093 0.00032 0.000032 40
70 82 (4) 88.01 0.0114 0.00039 0.000039 29

G7 401
30 238 (1) 251.82 0.0040 0.00009 0.000009 101
45 207 (1) 217.45 0.0046 0.00010 0.000010 88
70 169 (2) 178.71 0.0056 0.00014 0.000014 66

G8 709
30 339 (1) 354.39 0.0028 0.00006 0.000006 198
45 280 (3) 293.35 0.0034 0.00008 0.000008 167
70 235 (2) 247.62 0.0040 0.00009 0.000009 167

G9 1297
30 338 (1) 355.85 0.0028 0.00008 0.000008 524
45 281 (1) 295.32 0.0034 0.00009 0.000009 451
70 221 (1) 236.72 0.0040 0.00012 0.000012 420

rithm for 100 independent trials for each graph and
angle parameter. For the ABEB, the angle parame-
ter was progressively fixed as α = 30◦,45◦,70◦. For
the CBEB, the angle parameters were considered, but
they were employed for calculating Ta thresholds us-
ing the formula Ta = 1−α/180. Furthermore, for the
CBEB, the weights of the components of the objec-
tive function were chosen empirically as w1 = 0.2 and
w2 = 0.8 (see Section 5). Other parameters defined
for both sets of experiments were: the population size
(u = 150), the crossover rate (pc = 0.98), and the mu-
tation rate (pm = 0.4). The evolutionary cycle was
repeated until there was no further improvement in
the population for 500 consecutive iterations or the
maximum number of generations (set at 16,500) was
achieved. All tests were executed on a MacBook Pro
with an Intel Core i7 processor of 2.9 GHz and 8GB
of 1600MHz-DDR3 RAM.

7.1 Results for the ABEB Problem

The first experiment aimed to produce solutions with
the minimum number of bundles, and all edge angles
in a bundle never higher than a given α. Table 1 sum-
marizes the results for the various graphs. The first

three columns consist of general information. The
fourth column shows the number of bundles of the
best solution in 100 trials. The amount of trials in
which a solution with that quality appeared is pre-
sented in parenthesis. The fifth and the sixth columns
present the average values of the number of bundles
of the best solutions, and the average of their fitness,
respectively, over the 100 trials. The seventh and the
eight columns are the standard deviation and the stan-
dard error of the fitness values. The last column shows
the average of the total runtime.

Analyzing the table, one can see that the average
of the number of bundles in the best solutions was
nearby the best one found over the independent trials.
In addition, the standard deviations were low, indicat-
ing that a majority of the generated solutions are po-
sitioned close to the mean fitness. Figure 3 illustrates
the best solutions obtained for the graph G5 with an-
gle constraints α = 30◦ and α = 70◦. A comparison
between Figures 3(a) and (b) shows the effect on the
bundling as the α angle increases, joining more edges.
This is very noticeable for the edges connected to the
highlighted nodes (drawn as circles in light yellow).

In general, when solving the ABEB, the EEB
method produced good results in terms of the number
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Table 2: Results for the CBEB problem, averaged over 100 independent runs, u = 150, pc = 0.98, pm = 0.4, w1 = 0.2,
w2 = 0.8 and Ts = 0.890.

Graph Edges α(◦) Bundles of Avg. compa- Avg. Avg. Std. dev. Std. error Avg.
best solution tibility bundles fitness fitness fitness time (s)

G1 28
30 20 (3) 9.48 20.01 1.9354 0.02551 0.002551 2
45 16 (2) 13.27 18.17 2.6990 0.29839 0.029839 2
70 16 (2) 20.22 16.82 4.0925 0.24830 0.024830 2

G2 78
30 56 (2) 22.69 58.49 4.5518 0.24592 0.024592 11
45 48 (1) 35.87 50.72 7.1901 0.49003 0.049003 13
70 36 (1) 69.97 39.10 14.0145 0.86055 0.086055 15

G3 101
30 81 (1) 23.23 83.86 4.6546 0.33595 0.033595 12
45 76 (1) 34.94 81.10 6.9985 0.80816 0.080816 13
70 65 (1) 84.31 69.05 16.8739 0.61844 0.061844 18

G4 160
30 129 (1) 29.49 132.78 5.9044 0.40687 0.040687 31
45 112 (1) 50.48 119.24 10.1020 0.66873 0.066873 39
70 89 (1) 108.68 94.89 21.7440 1.45149 0.145149 47

G5 161
30 76 (1) 136.71 83.90 27.305 2.18483 0.218483 33
45 60 (1) 218.55 69.79 43.7209 4.24025 0.424025 36
70 50 (1) 387.42 52.88 77.5001 5.80255 0.580255 35

G6 254
30 174 (1) 121.04 180.17 24.2121 2.08592 0.208592 103
45 137 (1) 206.14 147.32 41.2327 3.00882 0.300882 111
70 97 (1) 426.76 101.97 85.3606 4.74743 0.474743 101

G7 401
30 305 (1) 170.56 312.62 34.1143 1.68656 0.168656 300
45 260 (1) 266.62 270.62 53.3276 2.48894 0.248894 315
70 209 (1) 501.12 213.89 100.2274 4.68943 0.468943 363

G8 709
30 452 (1) 410.16 464.50 82.0344 4.58910 0.458910 684
45 379 (1) 663.31 395.09 132.6634 4.62701 0.462701 834
70 312 (1) 1108.79 318.49 221.7608 9.51946 0.951946 828

G9** 1297
30 530 (1) 2159.99 535.93 431.9990 14.91452 3.986073 18551
45 428 (1) 3249.19 437.40 649.8400 22.67482 5.854614 11110
70 318 (1) 5774.74 327.73 1154.9496 57.56356 14.862847 6859

(a) (b)
Figure 3: MovieLens (G5) for ABEB with different angle constraints, (a) α = 30◦ and (b) α = 70◦.

of bundles and the α angle constraint. On the other
hand, some bundles may have edges that differ signif-
icantly in length. Therefore, as expected, the ABEB
usually produces bundles with low scale compatibil-
ity between the edges.

7.2 Results for the CBEB Problem

The second experiment was conducted in order to im-
prove the results by introducing the compatibility cri-
teria (CBEB). Table 2 summarizes the experimental
results for this problem. It follows the same struc-
ture as Table 1 and includes one column representing
the average compatibility measure of the best solu-
tions in 100 trials. The stochastic nature of the al-
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(a) (b)
Figure 4: LesMiserables (G6) with α = 70◦, (a) ABEB solution with 82 bundles and (b) CBEB solution with 97 bundles.

gorithm associated with the size of the search space
produced solutions significantly different from each
other in terms of fitness. However, the standard error
reflects a low sampling fluctuation. Note that similar
results did not occur for the USAirline (G9) graph,
first because the experiment was repeated only for 15
independent trials for this graph and also because the
number of edges significantly increased the size of the
search space. These results highlight how the number
of edges can dramatically increase the set of candidate
solutions for the CBEB problem.

Figure 4(b) shows the best solution produced by
EEB for the LesMiserables (G6) graph for the CBEB.
Note that, although the number of bundles has in-
creased, the solution for CBEB has bundles having
more similar edges than the solution produced for
ABEB (Figure 4(a)). The figures show that some
bundles present in the ABEB solution split and some
other were created in the CBEB solution.

Another additional feature of the CBEB is that, as
a multi-objective problem, the solution with the low-
est number of bundles is not always produced. This is
because the final solution depends on the weights in
the objective function and on the compatibility values
of the current results.

7.3 Comparison of EEB and an Exact
Approach for ABEB Problem

We now establish a qualitative point of view of the
complexity of the edge bundling problems discussed
in this paper and attempt to show that the EEB al-
gorithm is a promising approach. To do this, we
present (in terms of number of bundles and runtime
execution) the best solution over 100 independent ex-
ecutions obtained by EEB for the graphs Synthetic
and PlanarGD2015 for the ABEB problem. We then
compare numerical results with those generated by an
exact method based on an integer programming (IP)
model for the ABEB problem, published in (Ferreira
et al., 2017). The exact method is implemented using

Table 3: Comparison of number of bundles generated by
EEB with an exact method (IP) for ABEB problem.

Graph Edges α(◦) EEB IP Time Time
EEB (s) IP (s)

G1 28

30 17 17 2 0.16
45 16 16 1 0.16
70 13 13 1 0.35
90 11 11 1 0.39

110 10 10 1 0.14

G3 101

30 75 74 9 125.65
45 69 69 9 656.14
70 60 58 9 1210.29
90 53 50 9 1275.27

110 48 - 9 -

the Gurobi solver (Optimization, 2017) and a more
powerful computer (a DELL M630 server with 128
GB of RAM and 2 processors with 10 cores each –
40 visible cores of 3-3.6Ghz). The EEB method ran
on the simpler computer previously described. More
alpha angles were used this time. The results are
reported in Table 3. The fourth and fifth columns
present the number of bundles of the best solutions
by EEB and the exact IP method, respectively. A line
with a dash means that no solution was produced by
the IP method even after several hours of runtime.

The values in table show that the IP method was
effective in generating the optimal solutions only
for small numerical instances and took an inordinate
amount of time to solve some of the larger instances.
For the graph G3 with 101 edges the IP method failed
with a maximum angle of 110◦, implying that the ex-
act method is not practical for medium-sized ABEB
and CBEB problems as it requires excessive compu-
tation time.

Conversely, the EEB approach was usually suc-
cessful in finding close-to-optimal solutions. In addi-
tion, the execution time of EEB is significantly lower
than that of the IP method for the larger graphs, even
when using a less powerful computer.
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8 VISUALIZATION

Most existing edge bundling methods draw edges in-
dividually and route them closely. In contrast, the
EEB approach only outputs sets of edges representing
bundles. Those groups of edges form star subgraphs.
After the evolutionary algorithm has terminated, the
subgraphs of the best-found solution can then be sub-
mitted to a rendering module for producing an edge
bundling drawing.

In order to allow an adequate visual interpretation
of the EEB results, mainly the comprehension of the
relation patterns between the nodes, two visualiza-
tions are proposed in the present work. The first one
shows bundled edges as a colored cubic Bézier curve,
going from red to green by default. The red color rep-
resents the source (the central node of the bundles),
and the destination is colored green. In bundles with
just one edge, that edge is drawn as a straight line and
is colored light gray. The nodes themselves are col-
ored as black and red. Red means nodes correspond-
ing to a vertex cover set of the graph.

The rendering/routing method of the visualiza-
tion is a specialized implementation of the force-
based edge bundling approach of Holten and van Wijk
(2009) that receives the bundles as input and draws
them individually. The force-based algorithm guaran-
tees that the individual axial symmetry of each bun-
dle looks plausible. However, overall graph symme-
try is sampled poorly for some graphs because the al-
gorithm does not compute the route of the bundles to
maximize symmetry (see Figures 3 and 4). This visu-
alization is identified as the “primary view”. It allows
the reader to identify connections between nodes and
to trace individual edges.

Even though the previous visualization can reveal
relation patterns at the node level, for graphs with
a high level of clutter, edge crossings can still im-
pede their legibility. To reduce the visual edge cross-
ings and highlight the relation patterns, we followed
the strategy of Peng et al. (2012); Bruckdorfer et al.
(2012) that uses the idea of partial edge drawings.
Thus, the drawing of a curve is divided into three
parts, and the middle part is drawn using a partial
transparency. Figure 5(d) illustrates this visualization.
In addition, the parts of an edge incident to its end-
points can still be colored using different colors. All
of these aspects, like colors, transparency level and
highlight options can be chosen by the user. Such a
smooth visualization allows tracking of the individual
edges and is similar to the layout used by the Side-
Knot approach (Peng et al., 2012) (see Figure 5(c)).

9 DISCUSSION

As was mentioned earlier, there is a difference be-
tween most classical edge bundling methods and the
approach proposed here. The earlier methods attempt
to create drawings with reduced clutter. Some of these
methods have focused on minimizing various aspects
of the drawing that can be mathematically formalized,
for example, reducing ink or edge crossing. However,
they do not search for an optimal solution, but instead,
merely employ heuristic methods to produce solu-
tions (Pupyrev et al., 2011). On the other hand, our
approach involves an optimization algorithm with the
purpose of finding high-quality solutions for a formal
and precise problem definition. Thus, comparing the
EEB approach with previous methods in an informa-
tive manner is not straightforward, since the other ap-
proaches are not based on an explicit and well-defined
edge-bundling optimization problem.

As can be observed in Figure 5 (a), methods based
on force (such as divided edge bundling) produce sig-
nificantly different layouts from the ones created by
EEB, since they have no focus on showing connec-
tion trends of a node. Therefore, it is hard to estab-
lish which nodes are connected to each other. Never-
theless, stub bundling (Nocaj and Brandes, 2013) and
sideknot (Peng et al., 2012) approaches (Figures 5 (b)
and (c)) are more similar to EEB. They join only ad-
jacent edges with the aim of indicating directions at
the endpoints of the edges, highlight node-level con-
nections and trace individual edges. Those methods,
however, are not designed for an optimization-based
problem as there is no formal mathematical definition
of the problem being investigated.

In addition, if we attempt to formally define the
implicit problem studied by those techniques, then
differences with the proposed approach are found.
For example, the stub bundling approach tries to find
a partition containing only adjacent edges respecting
the following constraints: “the angle between any two
half-edges in a bundle must be at most α, and the an-
gle between two consecutive edges in a bundle has to
be at most γ” (Nocaj and Brandes, 2013). This is sim-
ilar to the ABEB problem except that the edges are
half-edges, i.e., they can be shared by two bundles,
and there is no clear attempt to minimize the number
of edge bundles.

A quantitative comparison of the efficacy of ear-
lier methods in terms of the number of bundles is not
possible, since the traditional approaches usually do
not provide that information. A visual comparison of
Figures 5 (b)-(d) reveals the efficiency of EEB for the
CBEB problem, with threshold α = 70◦. The algo-
rithm generated 241 bundles with more than one edge
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(a) Divided Edge Bundling (b) Stub Bundling (Nocaj and Brandes, 2013)

(c) SideKnot (Nocaj and Brandes, 2013) (d) EEB with partial edges, α = 70◦.
Figure 5: Comparison of solutions for the USAirlines (G9).

and 77 single-bundled edges (318 bundles in total).
It is clear that the our group of bundles is markedly
different from the solutions generated by the Stub
Bundling and the SideKnot methods, since in our ap-
proach, they are formed respecting model constraints.
Overall, the experimental results suggest that the main
disadvantage of the EEB framework is its long run-
ning time for large graphs. As with most population-
based search algorithms, the running time for EEB
is influenced by the population size, the number of
generations, the size of the graph and other param-
eters. The evolutionary parameters were adjusted to
attempt to find a near-optimal solution, which greatly
increased the running time.

Finally, the evolutionary edge bundling algorithm
attempted to satisfy, implicitly or explicitly, the aes-
thetics proposed in Section 4. For instance, the mini-
mization criteria of the total number of bundles, the
maximization of compatibility between edges, and
the maximization of the number of edges per bundle
are addressed by the objective function of CBEB (and
partially by ABEB) in EEB. Furthermore, bundling
only adjacent edges tends to minimize the ambiguity
of tracing edges. Symmetry was given by the use of
a force-directed edge bundling algorithm for render-
ing the results of EEB. The minimization of the total
number of crossings between edges and bundles was
addressed by using partial edge drawings.

10 CONCLUSIONS

This paper describes a new approach for edge
bundling by an approximate evolutionary algorithm
(EBB) in order to optimize edges to be grouped

into edge bundles. We examined angle-based edge
bundling which reduces angles between adjacent
edges, and compatibility-based edge bundling that
group edges with compatible directions and lengths.
A previously defined combinatorial optimization
problem (ABEB) and a new problem (CBEB) are dis-
cussed and solved using the evolutionary method. As
far as we know, this is the first evolutionary algo-
rithm for edge bundling modeled as a combinatorial
optimization problem. The method was implemented
and tested on a number of graphs, showing to be effi-
cient at finding a near-optimal solution when the goal
is to create bundled graphs with the minimum num-
ber of bundles by joining only adjacent edges. This
work examined just two particular edge bundling op-
timization problems. Many other problems remain
open. Future research could focus on the expansion of
the approach to extend the fitness function for multi-
objective search, in order to deal with new aesthet-
ics criteria. Investigating a complete rendering func-
tion that allows a more intrinsic way to route edges
and bundles, in order to produce smoother and more
readable drawings, may also be fruitful. Finally, con-
ducting some user-controlled studies may possibly es-
tablish if the EEB and new optimization-based edge-
bundling problems are visually appealing or effective
to help users to understand overall patterns.
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