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Abstract: In this paper, we introduce a new reliable method of stereoscopic Video Streaming based on multiple descrip-
tion coding strategy. The proposed multiple description coding generates 3D video descriptions considering
interesting objects contained in its scene. To be able to find interesting objects in the scene, we use two metrics
from the second order statistics of the depth map image in a block-wise manner. Having detected the objects,
the proposed multiple description coding algorithm generates the 3D video descriptions for the color video
using a non-identical decimation method with respect to the identified objects. The objective test results ve-
rify the fact that the proposed method provides an improved performance than that provided by the polyphase
subsampling multiple description coding and our previous work using pixel variation.

1 INTRODUCTION

Errors exist in the received video due to unreliable
communication is one of the common problems that
happens in both wired or wireless networks. In the wi-
red networks, error can occur due to packet loss, cor-
ruption, congestion and large packet delay whereas in
the wireless networks unreliable communication can
stem from temperature noise and interference that ex-
ist in the physical environment. Also, when dealing
with immersive videos, the increase of the data traf-
fic load will consequently produce data congestion.
Therefore, the serious packet failure problem needs to
be addressed since such errors on the delivered video
diminishes the viewing quality experience(Kazemi,
2012; Liu et al., 2015; Tillo and Olmo, 2007; Y. Yapc
and Urhan, 2008; Ates et al., 2008; Wang and Liang,
2007; Wei et al., 2012). To avoid such errors, an error
resilient method of data transmission is required used
by the encoder.

Generally, there are usually three methods in
the communication systems to avoid packet failure:
Automatic Repeat reQuest (ARQ), Forward Error
Correction (FEC), and Error Resilient Coding (ERC)
(Kazemi, 2012). The first method, the ARQ approach
requires a network with feedback capability and as a
result it is not suited for real-time or broadcast ap-
plications. The second method, the FEC approach is

designed to cope with a specific amount of noise error
making it impractical for noise variances that exceed
the threshold level. The third method, the ERC appro-
ach, is the approach of choice in this paper because of
its resiliency against packet corruption or noise fea-
ture. This resiliency is achieved through redundancy
bits added to the data stream. Among a number of
ERC methods, the multiple description coding met-
hod is our method of choice due to its suitability for
the channel with the large noise power. MDC avoids
packet failure because it creates multiple complimen-
tary and separately-decodable descriptions.

Using MDC, a video stream is partitioned into se-
veral separately decodable descriptions and transmit-
ted to its respective receivers. In the receiver, there are
two different types of decoder - the side decoder and
central decoder. The receiver chooses one of the two
decoders based on the availability of error free des-
criptions remaining. With the MDC method should an
error occur in one description, it may be fixed when
considering other error free descriptions.

This paper organizes as follows: a literature re-
view regarding multiple description coding and how
it can be applied on the stereoscopic video, is presen-
ted in Section 2. Then, the proposed method will be
introduced in Section 3 and afterword, test results will
be presented and discussed in Section 4. Finally, we
have a review about our achievement in Section 5.
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2 STATE OF THE ART

The MDC method is best recognized for its error
robust property at the expense of compression ra-
tio as it adds redundancies in its temporal, spatial
or frequency domain. With the temporal MDC met-
hod, usually two descriptions are produced in or-
der to avoid a drop in the coding efficiency. The
drop in the coding efficiency is reflected when more
than two descriptions are used because the distance
between the assigned frames to each description is
increasing resulting in the motion prediction being
less effective (Liu et al., 2015; Chakareski et al.,
2005). When the network is very noisy, a higher num-
ber of descriptions are required. Therefore the tem-
poral MDC method is no longer a suitable techni-
que. The frequency MDC method partitions Discrete
Cosine Transform (DCT) coefficients between video
descriptions. Because DCT transformation provides
independent components, the descriptions will be less
dependent. To maintain the correlation of the descrip-
tions, extra transformation like Lapped Orthogonal
Transformation (LOT) needs to be applied (Chung
and Wang, 1999; Sun et al., 2009). Therefore the
complexity of frequency MDC methods is higher than
that of both the spatial and temporal MDC methods
respectively. With the spatial MDC method, each vi-
deo frame is partitioned into several lower resolution
subimages using Polyphase SubSampling (PSS) algo-
rithm (Shirani et al., 2001; Gallant et al., 2001; Ka-
zemi, 2012). It is worth mentioning that with a simple
spatial MDC method, there is no precise adjustment
tool over the redundancy in order to control the side
quality(Shirani et al., 2001; Gallant et al., 2001; Ka-
zemi, 2012). This means that there is no control for
the redundancy increase resulting in higher resistivity
to compensate for the higher noise level.

To apply the MDC method for 3D videos, the
depth map image also needs to be partitioned into dif-
ferent descriptions. It is worth mentioning that the
depth map image mainly contains depth information
of the scene’s objects. Because of the nature of the
real objects, depth information of 3D scenes rarely
contain high frequency content. Consequently, the
depth map image can be effectively compressed ef-
fectively resulting in saved bandwidth and disk space
(Fehn, 2004; Hewage, 2014). To improve compres-
sion, Karim et al. have shown that the downsampled
version of the depth map image provides an adequate
reconstruction of the 3D video in the receiver (Karim
et al., 2008). They have experimented with the spatial
MDC method for 3D videos using color plus depth
map image representation. Karim et al. have carried
out experimental tests with a scalable multiple des-

cription coding approach arriving at the same result.
Therefore, it can be said that downsampling of the
depth map image does not cause a considerable de-
gradation in the quality of a reconstructed video. This
is due to the fact that the depth map image includes
low frequency contents or more precisely, the depth
values of adjacent pixels are similar. Consequently,
one can state that the neglected pixels during downs-
ampling can be better predicted. Liu et al utilized the
fact of having similar depth values of pixels for real
objects and introduced a texture block partitioing al-
gorithm in order to perform their MDC algorithm for
wireless multi-path streaming (Liu et al., 2015).

However, multiple description coding has been in-
vestigated for 2D videos thoroughly. More investi-
gation is required to apply MDC to 3D video speci-
fically. For 2D videos, different MDC methods are
classified according to the type of data which is di-
vided into descriptions which include: temporal, spa-
tial, frequency, or compressed. For example, with a
temporal MDC method using two descriptions, one
description can be odd frames and the other descrip-
tion even frames. With a spatial MDC algorithm each
video frame is partitioned into several lower resolu-
tion subimages. With a frequency MDC method, the
frequency components divide between descriptions.
Each type of MDC method has its own advantages
and disadvantages with regard to its particular appli-
cation. The temporal MDC method is simple though
unsuitable for an application involving a network with
high packet failure due to its low capability in incre-
asing data redundancy. With the higher complexity
of frequency MDC method, the spatial MDC method
can best accommodate a live HD video conference ap-
plication over an error prone environment.

3 PROPOSED METHOD

This section describes the new proposed multiple des-
cription coding applicable for 3D videos considering
ROI. In order to be able to recognize which part of
the frame is more important or ROI map extraction, a
metric needs to be defined. To this end, two metrics
(PV and CV ) are defined and the result for each me-
tric will be compared at the end. For the first metric
(PV ), we calculated the average of the absolute varia-
tions for pixels’ values found in the depth map image
in a block wise manner:

PVi =
1
Ni

Ni

∑
j=1
|D j−µi| (1)

where µi is the average of depth values for block i
and PVi stands for the pixel variation of block i; D j
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is the depth value of pixel j in ith block and Ni is the
total number of pixels in block i (i.e. j = 1,2, ...,Ni).
Generally, PVi of block i is a Non-negative value that
can vary from zero to infinity. Large PV shows that
block i is probably related to several objects or edges
and very small PV states that block i is likely related
to the far distanced background or the planar objects
for example, a wall. This is due to the fact that the
depth information of an object contains low frequency
contents, naturally.

For the second metric, we define a new metric
(CV ) as the ratio of Pixel Variation (PV ) to the mean
µ, also known as Coefficient of Variation (CoV):

CVi =
PVi

µi
, (2)

where CVi is CoV for the block i within a depth map
image. Like before, µi stands for the mean value of
depth for the pixels in block i . PVi has already been
defined in Equation (1). Similar to PV , the CV is also
a positive value. When CV of a block equals one then
the depth values of that block have the same mean
and standard deviation values. It can be argued that
blocks with large CV values are probably related to
several objects or edges while blocks with very small
CV values are related to the background of the video
frame. Consequently, they are not the interesting part
of the frame that the ROI extraction algorithm is look-
ing for.

Figure 1 shows an overview of the proposed enco-
der. As can be seen in this figure, the first step of the
proposed encoder is to determine which part of the
frame is more important. One important issue in this
process is its requirement for a low complexity algo-
rithm in order to realize the interesting objects in the
frame. The ROI extraction algorithm proposed in this
paper uses the characteristics of the depth map image
and extracts the map of ROI using one of the metrics
explained in the previous section. In this algorithm,
the ROI range is defined as the distance between σmin
and σmax. σmin is the threshold which is used to se-
parate the very far background objects from the in-
teresting objects and σmax is the limit used to detect
edges of the interesting objects. Also NTot

itr is the total
possible number of iterations that can be run by the
hierarchical block division algorithm. The algorithm
that identifies the objects is run in four major steps:

• Step 1: Create two empty lists (L1&L2), and as-
sign the entire depth map image as one block to
L1. Then start the first iteration as explained in
step 2.

• Step 2: Check if the algorithm reaches the limit
of NTot

itr or if all blocks in L1 are with PV or CV
values smaller than σPV

max or σCV
max, respectively. If

yes, go to step 4. If not, go to step 3. Clearly, in
the first iteration there is only one block in L1 and
its metrics are with the strong probability greater
than σmax.
• Step 3: For every block in L1 with the metric

value greater than the threshold, divide the block
into four equal sized blocks and assign them to L2.
Any block with metric value less than the thres-
hold is assigned without change to L2. After ha-
ving checked all the blocks in L1, L1 is updated
with L2 and L2 is cleared. Then return back to the
step 2.

• Step 4: All blocks in L1 with metric values less
than σmin are considered as region I. Blocks with
metric values within the ROI range are considered
as region II and remainders are region III .
In the hierarchical block division algorithm, a

block is partitioned to smaller blocks by dividing the
width and height of the block by a factor 2 in each
iteration. It is worth mentioning that NTot

itr should be
defined in order that the minimum block size be grea-
ter than a 2×1 or 1×2 pixels block size. This is due
to the fact that both metrics used in this algorithm eva-
luate pixel variation where there is at least two pixels
to measure the variation.

To have reliable video streaming, the proposed
new spatial MDC algorithm exploits the Multiple
Description Coding (MDC) strategy for 3D videos af-
ter ROI extraction algorithm. To this end, four des-
criptions are created using Poly phase SubSampling
(PSS). PSS-MDC is the basic low complex method
that can be used in the spatial domain to have a re-
liable transmission in the error prone environment.
Although, the most important advantage of the PSS-
MDC encoder is its simplicity, there is a capability
lack in increasing the redundancy in order to avoid
errors in the strong noisy environment. To fix this, the
new spatial MDC algorithm enhances the pixel reso-
lution for areas that are less predictable and also on
objects of interest that are more important to focus
on.

As can be seen in Figure 1, two different algo-
rithms are applied on the color video and the depth
map stream. For the depth map stream, the resolu-
tion of each description is enhanced according to its
prediction difficulty. Since the metrics defined in this
paper evaluate the variation between adjacent pixels,
it can be said that pixels of the depth map frame are
clustered into regions I to III according to their dif-
ficulty prediction levels. This means that the region
I, which includes pixels with very low variations, re-
mains without any change. Pixel resolution in the re-
gion II is enhanced to one second for each description.
Since the region III contains pixels with large variati-
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Figure 1: Block diagram of the proposed method.

ons, it is likely that the prediction of a pixel (in case
of missing) from adjacent pixels leads to error. As a
result, this region’s pixel resolution has increased to a
fuller pixel resolution for each description.

Since the region’s clustering algorithm is done
using the depth map image rather than the color video
frame, it cannot reflect the pixels’ value variations for
the color video frame. Therefore, the above mentio-
ned argument is no longer applicable. One sugges-
tion with regards to the color video is to apply the
proposed ROI detection algorithm on the color video
stream in order for it to extract ROI map based on the
pixel variation found in the color video frame; but the
drawback is its greater complexity due to a wide va-
riety of colors inherently part of any scene naturally.
As a result, the hierarchical block division algorithm
needs more time to identify different regions in the
frame. Another suggestion is to use the ROI map ex-
tracted from the depth map image to then focus on
region II for the enhancement of pixel resolution in
the color video frame rather than on region III which
is performed within the depth map stream. Since the
human eye is more sensitive to objects rather than of
pixels, this suggestion introduces better performance
with regards to the subjective assessment. Also, it can
provide improvement with regards to the objective as-
sessment since the recording of moving objects inhe-
rently part of the frame in the scene are now more
focused. Because all video coding standards use Dif-
ferential Pulse Code Modulation (DPCM) and prox-

imate pixels’ values of the objects in the color video
frame, the increase of the resolution of those parts of
a frame that include the ROI can be compensated by
DPCM algorithm in point of compression ratio. The-
refore, with regards to the color video stream, region
II and III are enhanced to full and one second reso-
lution, respectively. Region I remains with the same
resolution as before (one fourth). This enhancement
algorithm helps to perfectly recover the ROI in the
instance of missing a description, although at the ex-
pense of increased redundancy.

4 SIMULATION RESULT AND
DISCUSSION

For the assessment of the proposed algorithm, this pa-
per carried out some tests using two stereoscopic test
video sequences with the format of DVD-Video PAL
(720× 576), called video ”Interview” and ”Orbi”.
Each video has 90 frames and the frame rate is 30
frames per second (fps). The chroma and depth subs-
ampling format is 4 : 2 : 2 : 4 (the last 4 stands for the
resolution of the depth map image) or in other words
the total frame resolution is 1440×576. The new al-
gorithm is implemented using H.264/AVC reference
software, JM 19.0 (Institut, 2015). To encode with
JM software, I frames are repeated every 16 frames
and only P frames are used between I frames.
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(a) Original video frame.

(b) Region I (Ex. by PV ). (c) Region I (Ex. by CV ).

(d) Region II (Ex. by PV ). (e) Region II (Ex. by CV ).

(f) Region III (Ex. by PV ). (g) RegionIII (Ex. by CV ).

Figure 2: Comparison the performance of extracting diffe-
rent regions (I-III) for the first frame of video ”Interview”.

In the remainder of this paper, we will first inves-
tigate and compare the Performance and Complexity
of the proposed algorithm using PV and CV . Then,
we will assess the performance of the new proposed
spatial MDC algorithm for streaming in the noisy en-
vironment. It is worth mentioning that to simulate
an error prone environment, we have assumed that
the decoder receives only one description among four
descriptions generated in the encoder.

Figure 2 shows the identified regions I to III using
PV and CV metrics. As can be seen, the identified
region II is more accurately depicted with the CV me-
tric rather than with the PV metric. The same sce-
nario is also applicable for the region I. As can be
seen in Figure 2d there are some important pixels that
have not been detected as the region II (ROI). Also we
have identified some missed pixels in region I (back-
ground) with PV as shown in Figure 2b. Such in-
accuracy in realizing different regions with PV can
be due to the fact that pixel values of different blocks
are in dissimilar ranges. Therefore the pixel varia-
tion (PV ) can not be an appropriate metric to be used
when extracting for regions I and II. To fix this pro-

blem as argued before, it is necessary to normalize
the pixel variation metric(PV ). Indeed, the CV me-
tric is the normalized version of pixel variation and
works like a smoothing filter. Although using norma-
lized pixel variation metric (CV ) provides a conside-
rable improvement in the extraction of regions I and
II, such performance is not achieved when using the
CV metric in detecting region III (which stands for the
edges). As can be seen in Figure 2, the detected edges
shown in Figure 2g is not as clear as the detected ed-
ges shown in Figure 2f. This can be due to the smoo-
thing effect brought about by the normalization using
the CV metric. As the blocks that contain edges are
considered as blocks with high frequency contents, a
high frequency filter like the pixel variation measure-
ment (PV ) is more beneficial for identifying the ed-
ges. Therefore, an optimum algorithm can extract the
edges using metric (PV ) an then detect the important
objects using metric (CV ).

Table 1 shows the average number of blocks for
different metric values of PV and CV . As can be seen
by this table, about 55% of the depth map image for
video Interview and 40% of the depth map image for
the video Orbi have PV values less than 1. On the ot-
her hand, for the video Interview more than one half
and for video Orbi more than one third of the depth
map image have very close depth values. This is the
reason why the decimation of the depth map image
does not affect its quality when it is reconstructed in
the decoder. Table 1 also shows that about 95% of the
depth map image for both test video sequences have
PV values less than 3. The fact that about 95% of the
depth map image have similar depth values result in
no longer needing to send the depth map image with
its original resolution, justifies why the non-identical
decimation is more advantageous than the identical
decimation sugested by Karim et al. in (Karim et al.,
2008). On the other hand, only about 5% of the depth
map image needs to be encoded with the original reso-
lution. The 95% remainder can be decimated to save
bandwidth or storage.

To investigate how robust the proposed MDC met-
hod is against error, we assumed that only one des-
cription is availble to decoder and all other three des-
criptions have been lost. In order to reconstruct the
video, the decoder estimates the missed pixel value
from the nearest available pixel value. Figure 3 and
Figure 4 compare PSNR and SSIM measurements
of the reconstructed color video for video Interview
using the basic Poly phase SubSampling MDC met-
hod (PSS-MDC), our previous MDC method presen-
ted in (Rahimi and Joslin, 2017), and the new pro-
posed spatial MDC algorithm with the help of PV
and CV metrics. Figure 5 and Figure 6 also show
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Table 1: Number of blocks with different metric values after hierarchical division algorithm.
(a) Video ”Interview”.

Blocks’ size Percent of blocks with
6 24 96 384 1536 6144 24576 98304 metric value in a

(2×3) (4×6) (8×16) (16×24) (32×48) (64×96) (128×192) (256×384) specific range(%)

PV

≤ 1 662.78 371.67 172.54 75.80 22.28 17.82 0.68 0.00 55.68
1∼ 3 1008.44 618.18 336.37 133.91 25.44 2.82 0.11 0.00 41.64

3∼ 10 831.50 4.77 0.24 0.00 0.00 0.00 0.00 0.00 1.30
≥ 10 898.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.37

CV

≤ 0.1 646.10 276.93 150.99 67.53 37.82 18.57 0.00 0.00 56.74
0.1∼ 0.2 32.79 11.21 4.24 2.59 2.59 1.28 1.93 0.00 15.57
0.2∼ 0.3 45.37 16.27 5.67 3.80 3.92 2.40 0.00 0.00 5.96
0.3∼ 0.4 105.10 24.84 4.11 3.00 2.19 2.34 0.00 0.00 5.22
0.4∼ 0.5 52.64 29.00 4.31 4.34 0.56 0.84 1.69 0.07 14.55
≥ 0.5 1286.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.96

(b) Video ”Orbi”.

Blocks’ size Percent of blocks with
6 24 96 384 1536 6144 24576 98304 metric value in a

(2×3) (4×6) (8×16) (16×24) (32×48) (64×96) (128×192) (256×384) specific range(%)

PV

≤ 1 542.72 295.40 172.56 69.13 34.42 4.69 0.80 0.00 39.37
1∼ 3 1680.86 752.81 331.84 108.19 39.29 6.48 0.74 0.00 55.95

3∼ 10 2276.38 8.09 0.47 0.00 0.00 0.00 0.00 0.00 3.53
≥ 10 753.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.15

CV

≤ 0.1 614.22 244.82 118.68 49.28 35.30 6.58 0.81 0.00 39.28
0.1∼ 0.2 59.43 28.10 11.99 8.81 5.51 1.64 0.10 0.00 6.76
0.2∼ 0.3 79.78 28.24 9.36 5.84 4.41 2.56 0.48 0.40 19.80
0.3∼ 0.4 134.88 35.41 10.13 4.74 4.08 1.38 0.22 0.61 21.54
0.4∼ 0.5 90.23 41.59 9.84 3.82 2.31 0.80 0.00 0.30 10.66
≥ 0.5 1285.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.96

the PSNR and SSIM assessments for the video Orbi.
As can be seen in Figure 3, in the recreated video
Interview about 1 dB improvement for the PV me-
tric and 2 dB improvement for the CV metric can
be achieved by the new proposed spatial MDC alo-
rithm when compared to our previous work presented
in (Rahimi and Joslin, 2017). Regarding video Orbi
(see Figure 5), although a considerable improvement
cannot be seen compared to our previous work, more
than 2 dB improvement has been achieved by the new
proposed spatial MDC algorithm in comparison with
the PSS-MDC method. Regarding to the SSIM as-
sessment, the proposed algorithm provides about 0.3
improvement for both test videos in high rate strea-
ming compared to the PSS-MDC method. It should
be mentioned that since the human eye is more sensi-
tive to objects rather than that of pixels, a subjective
assessment can better emphasize the improved per-
formance brought forward by the proposed algorithm
compared to the previous methods.

When it comes to the evaluation of the proposed
algorithm for the reconstructed depth map image, it
shows a better performance. As shown in Figure 7
and Figure 8 for the video Interview and in Figure 9
and Figure 10 for the video Orbi, the improvement of
the proposed algorithm is considerably evident. This
can be due to the fact that metrics PV and CV are
calculated based on the depth map image and there-

Figure 3: PSNR assessment of color image for video Inter-
view.

fore blocks with larger values of metrics PV and CV
can be considered as the least predictable blocks in
the depth map image. Therefore, focusing on these
pixels in each description results in a more accurate
reconstruction in the decoder. In view of the PSNR
assessment, about 8 dB for video Interview and more
than 10 dB for video Orbi improvement have been
achieved by the proposed algorithm. Such high per-
formance of the proposed algorithm in view of the
SSIM assessment is also more evident compared with
the color video assessment. With regards to the SSIM
assessment, the proposed algorithm outperforms by
more than 0.02 compared to PSS-MDC method.
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Figure 4: SSIM evaluation of color image for video Inter-
view.

Figure 5: PSNR assessment of color image for video Orbi.

Figure 6: SSIM evaluation of color image for video Orbi.

5 CONCLUSION

Multimedia streaming is affected by packet failure in
the network due to packet loss, packet corruption, and
large packet delay. An appropriate solution against
packet failure in the error prone environment can be
multiple description coding (MDC). With MDC, one
video description is partitioned into several separa-
tely decodable descriptions. In the instance of mis-
sing a description during transmission, the decoder
is capable to estimate the lost description from other
error free description(s). To improve the basic spa-
tial partitioning and to be applicable to 3D videos, a

Figure 7: PSNR assessment of the depth map image for
video Interview.

Figure 8: SSIM evaluation of the depth map image for video
Interview.

Figure 9: PSNR assessment of the depth map image for
video Orbi.

non identical decimation algorithm for the stereosco-
pic videos has been provided in this paper. Our algo-
rithm works based on existing objects in the scene and
assigns more bandwidth to the region of interest.Since
human eyes are more sensitive to the objects rather
than that of pixels, the proposed algorithm can pro-
vide an improved performance compared to the PSS
MDC method in view of subjective assessment. Ho-
wever, the objective assessment results confirm the
improved performance achieved by the proposed spa-
tial MDC algorithm. With regard to the depth map
image, the proposed algorithm enhances the current
basic decimation to a non identical decimation. As
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Figure 10: SSIM evaluation of the depth map image for
video Orbi.

shown earlier, most parts of the depth map have si-
milar depth values and therefore decimation in those
parts can save bandwidth or storage without conside-
rable quality degradation. However, for the parts of
the frame with high pixels’ value variation, it is re-
commended to keep the original resolution. There-
fore, with the new algorithm those parts of the depth
map image that have large variations is encoded with
the original resolution.
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