
BroncoVote: Secure Voting System using Ethereum’s Blockchain

Gaby G. Dagher1, Praneeth Babu Marella1, Matea Milojkovic2 and Jordan Mohler3

1Boise State University, Boise, Idaho, U.S.A.
2Winthrop University, Rock Hill, South Carolina, U.S.A.

3University of Denver, Denver, Colorado, U.S.A.

Keywords: Blockchain, Ethereum, Smart Contracts, Voting, Privacy.

Abstract: Voting is a fundamental part of democratic systems; it gives individuals in a community the faculty to voice
their opinion. In recent years, voter turnout has diminished while concerns regarding integrity, security, and
accessibility of current voting systems have escalated. E-voting was introduced to address those concerns;
however, it is not cost-effective and still requires full supervision by a central authority. The blockchain is an
emerging, decentralized, and distributed technology that promises to enhance different aspects of many indus-
tries. Expanding e-voting into blockchain technology could be the solution to alleviate the present concerns in
e-voting. In this paper, we propose a blockchain-based voting system, named BroncoVote, that preserves voter
privacy and increases accessibility, while keeping the voting system transparent, secure, and cost-effective.
BroncoVote implements a university-scaled voting framework that utilizes Ethereum’s blockchain and smart
contracts to achieve voter administration and auditable voting records. In addition, BroncoVote utilizes a few
cryptographic techniques, including homomorphic encryption, to promote voter privacy. Our implementation
was deployed on Ethereum’s Testnet to demonstrate usability, scalability, and efficiency.

1 INTRODUCTION

The United States of America was founded upon be-
liefs in individual rights. The right to vote is in-
herent in the American way of life and, with im-
provements in technology and concepts such as smart
cities becoming a reality, it could be assumed voting
has become easily accessible for all individuals and
votes are protected. However, even at the university
level, voter fraud has been a continual adversary. A
scam in 2016 at Kennesaw State University brought
the issues of voter registration fraud to the forefront:
individuals carried voter registration forms around
the university’s campus. Students believed they had
signed up to vote in the 2016 Presidential Election
without knowing their registration forms were simply
trashed–until the day of the election when they were
unable to cast a vote 1. The same year city officials in
Green Bay, Wisconsin refused to allow early voting
on the University of Wisconsin’s satellite campus. In-
stead, the nearest early voting location was a fifteen-
minute drive from campus and was only open during

1http://bettergeorgia.org/2016/09/11/a-different-kind-
of-voter-fraud-one-to-actually-be-worried-about/

regular business hours2. The difficulty of accessing
a voting site excluded many students from having a
voice in the 2016 Presidential Election. To add to this
frustration, many locations across the country will not
accept student identification cards as suitable IDs for
voting. Voter registration fraud and lack of access to
voting sites for university students are important is-
sues that must be addressed.

Secure and privacy preserving voting systems are
necessary for university-scale elections. For instance,
at many universities, one of the major objectives of
the student government organization Associated Stu-
dents (AS) is to “advocate for the interests of students
at the University”. In order to achieve this purpose,
students must have easy access to voting polls and
the reassurance that their votes will not be tampered
with or revealed. E-voting protocols have recently
increased in popularity; these systems attempt to
address the previously mentioned needs. One such
system, TIVI, uses digital authentication of voters

2https://www.thenation.com/article/city-clerk-opposed-
early-voting-site-at-uw-green-bay-because-students-lean-
more-toward-the-democrats/

96
Dagher, G., Marella, P., Milojkovic, M. and Mohler, J.
BroncoVote: Secure Voting System using Ethereum’s Blockchain.
DOI: 10.5220/0006609700960107
In Proceedings of the 4th International Conference on Information Systems Security and Privacy (ICISSP 2018), pages 96-107
ISBN: 978-989-758-282-0
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

through facial biometrics: specifically, selfies 3. Al-
though TIVI solves the accessibility issue previously
mentioned, it does not completely stop fraudulent ac-
tivity. Using public photos and 3-D rendering, mali-
cious users are able to break into accounts 4. Helios
is the first online, open-audit voting protocol. Helios’
first priority is data integrity; then it addresses voter
privacy. To ensure data integrity, any observer may
audit the election process at any time during the elec-
tion. Although an individual’s name is initially posted
along with the individual’s encrypted vote, after the
election closes, the votes are shuffled and then the
result is computed. Helios claims to be the optimal
voting system for small groups where coercion is un-
likely but private voting is necessary (Adida, 2008).
Although Helios maintains data integrity, voter pri-
vacy is not preserved to the utmost. Another major
limitation associated with current e-voting systems is
voting fraud in the form of database/platform manip-
ulation (Tarasov and Tewari,). Current e-voting pro-
tocols are prone to vote manipulation due to their cen-
tralized nature. Our solution to the security concerns
of current e-voting systems uses the blockchain. Vot-
ing systems using the blockchain do not have a cen-
tral point of failure due to blockchain being a dis-
tributed system (Atzori, 2015). Therefore, through
the blockchain, users can confirm none of the votes
were tampered with and the final count is valid (FMV,
2016).

The blockchain is a public ledger that operates
without a central authority. To ensure data integrity,
all the nodes on the blockchain verify and store ev-
ery transaction. Users create transactions which are
then gathered into blocks by “miners.” In order for
a miner to append his block to the blockchain, he
must complete a proof such as a Proof-of-Work or
Proof-of-Stake. Due to the append-only structure of
the blockchain and the computational power needed
to add a block to the chain, the majority of the
computational power on the network (at least 51%)
would need to collude in order to rewrite a part of
the blockchain. Because of these properties, the
blockchain is considered an immutable, secure data
structure. The Ethereum Blockchain expands this
functionality by implementing smart contracts (Bu-
terin et al., 2013).

Smart contracts are blocks of code that are stored
on the blockchain. Smart contracts consists of func-
tions or events that allow contracts to interact with
each other and users. Since these smart contracts

3https://eandt.theiet.org/content/articles/2016/10/voting-
online-made-possible-with-selfie-recognition-technology/

4https://www.wired.com/2016/08/hackers-trick-facial-
recognition-logins-photos-facebook-thanks-zuck/

are stored on the blockchain, the code is not modifi-
able and is available for use by nodes connected to
the blockchain. To protect the system against ma-
licious users and compensate miners for computa-
tional power usage, the execution of every transac-
tion includes a transaction fee, referred to as “gas”
in Ethereum. Gas is the unit of measure for the
amount of work that is accomplished for an opera-
tion and the gas price is measured in terms of ether
in Etherem (Buterin et al., 2013). Smart contracts
also extend the use of private blockchains; as op-
posed to public blockchains, private blockchains are
only accessible by one organization. While this sac-
rifices part of the blockchain’s decentralization prop-
erty, it enhances the privacy of the blockchain (Bu-
terin, 2015). Our system for handling university vot-
ing, BroncoVote, implements a private blockchain.
We believe a private blockchain is suitable based on
the needs for the integrity and privacy of ballots.

Our proposed system uses similar concepts as
(McCorry et al., 2017), (Andrew Barnes and Perry,
2016), and (Ernest, 2014), specifically in the areas
of privacy and smart contracts. All three of the sys-
tems in these articles encrypt ballots stored on the
blockchain to ensure voter privacy. The systems
also utilize hashing to ensure strong data integrity.
In (McCorry et al., 2017), the voting system may
have an optional round in which voters hash and post
their encrypted vote to the blockchain. Transactions
consisting of votes are hashed before being stored
on the blockchain in the system described in (An-
drew Barnes and Perry, 2016). Furthermore, (Mc-
Corry et al., 2017) employs smart contracts to ease
the voting process: one to oversee the election pro-
cess and one to aid in the cryptography process.

1.1 Contributions

Our implemented system, BroncoVote, provides a se-
cure and private e-voting system that is also easily ac-
cessible. BroncoVote is a university scale voting sys-
tem that utilizes smart contracts in Ethereum and Pail-
lier Homomorphic Encryption to achieve our goals.
Our system also allows for different types of ballots:
users have the freedom to create polls or elections as
well as have the option to choose who can vote on
their ballot. BroncoVote provides voter privacy on
all our ballots by encrypting every vote, homomor-
phically tallying, and revealing the vote count using
Paillier cryptosystem decryption process. To main-
tain data integrity, all ballot and voting data is publicly
available as part of the smart contracts or blockchain
in our system. Congruent to the goals of smart cities,
this implementation of a blockchain-based voting sys-

BroncoVote: Secure Voting System using Ethereum’s Blockchain

97

tem further integrates technology into the daily lives
of individuals.

2 PRELIMINARIES

2.1 Blockchain Mining

To reach consensus on the state of the blockchain
in a trust-less network, a concept known as ‘min-
ing’ is employed (Nakamoto, 2008). The role of a
miner node is to verify transactions, group transac-
tions into blocks, and append them to the blockchain.
To append a new block to the blockchain, the hash
of the block must begin with a certain number of ze-
ros. To achieve this, a number called a ‘nonce’ is in-
cluded in each block; each time miners hash the block
without solving the computational problem, they in-
crement the nonce and rehash the block (Nakamoto,
2008). The difficulty of solving the hashing problem
is described as ‘Proof of Work,’ signifying the com-
putational power and difficulty needed to append a
new block to the blockchain (Nakamoto, 2008). Be-
cause of the computational power needed to mine the
blockchain, miners are rewarded: for instance, in Bit-
Coin, when miners successfully append new blocks
to the blockchain, they are rewarded with the current
payout rate in bitcoins (Nakamoto, 2008).

2.2 Eth.calls

Every valid transaction executed is stored on the
blockchain (Buterin et al., 2013). Due to this,
blockchains can suffer from scalability issues. Valid
transactions sent to smart contracts in the Ethereum
blockchain are considered state changeable calls and
consume gas. To reduce gas consumption and
the number of transactions on the blockchain, the
Ethereum blockchain allows eth.calls to be utilized in
addition to transactions. Eth.calls allow nodes to send
messages to other nodes or smart contracts to retrieve
its current state without storing the message on the
blockchain 5. Therefore, eth.calls are similar to simu-
lations of transactions. By executing eth.calls to send
notifications/messages or to retrieve current states, the
size of the blockchain can be greatly reduced.

2.3 Paillier Encryption

Full homomorphic encryption enables users to per-
form computations on encrypted data that can be de-
crypted and yield the same result as if the compu-

5https://github.com/ethereum/wiki/wiki/JSON-RPC

tation had been originally performed on decrypted
data (Xun Yi, 2014). However, doing fully modu-
lar multiplication in fully homomorphic encryption
is computationally intensive and very slow (Wang
et al., 2015). Nonetheless, because of the advan-
tages of homomorphic encryption, partial homomor-
phic encryption is a prominent encryption scheme.
One such scheme is Paillier Encryption. This prob-
abilistic public-key encryption method supports addi-
tion and multiplication (Xun Yi, 2014). Paillier sys-
tem can homomorphically add two ciphertexts but it
can only multiply a ciphertext with a plaintext inte-
ger. Since the Paillier system cannot homomorphi-
cally multiply two ciphertexts, it is considered par-
tially homomorphic. The process of encryption is
not completely intuitive: multiplying ciphertexts is
equivalent to adding the plaintexts and raising a ci-
phertext to the power of another ciphertext is equiv-
alent to multiplying the plaintexts (OKeeffe, 2008).
To achieve the advantages of homomorphic encryp-
tion without the substantial reduction in processing
speed, Paillier Encryption is one of the ideal encryp-
tion schemes.

2.4 MetaMask

MetaMask was created to increase the accessibility
of the Ethereum blockchain to the average user. A
plug-in for Chrome, MetaMask acts as an Ethereum
browser, allowing users to manage their Ethereum
wallet and interact with decentralized applications
and smart contracts without running a full node.
Through MetaMask, users are able to manage mul-
tiple accounts and easily switch between different
networks 5 . In order to allow users the flexibil-
ity of using the Ethereum blockchain without run-
ning a full node, MetaMask relies on trusted nodes
to broadcast the transactions of MetaMask users in
order to be mined. Since transactions are signed us-
ing the sender’s private key, which is stored locally
on the user’s machine, MetaMask cannot imperson-
ate the user and send transactions on the user’s be-
half. Acting as an intermediary between Chrome and
the Ethereum blockchain, MetaMask allows users the
convenience and security of the blockchain within a
popular browser.

5https://github.com/MetaMask/metamask-extension

ICISSP 2018 - 4th International Conference on Information Systems Security and Privacy

98

Creator Contract Voting ContractRegistrar Contract
Voting Contract

Ballot ID
Voting Contract Addr.

Ballot ID Option
Ballot Title
Ballot Type

Ballot Vote Limit
Ballot Time Limit

Whitelisted Voters

Option Hash
Choice Encrypted Vote Count
Voter Eth. Addr.
Vote Attempts

Whitelisted Domains

Voter Eth. Addr.

Voter ID
Ballot ID Voter Email

Voter Perm.
Voting Contract Addr.

Figure 1: Memory field structure of smart contracts in BroncoVote, where lines between fields represent relational data.

3 PROPOSED SOLUTION:
BroncoVote

3.1 Overview

Preceding the introduction to our voting system, it
merits mentioning that the Ethereum protocol utilized
as part of our system has not been modified in any
way. Our system, BroncoVote, uses existing function-
ality and features provided by Ethereum to provide
the ability for creating and voting on ballots. Our im-
plementation consists of three smart contracts coded
in Ethereum’s Solidity language, two scripts written
in JavaScript, and one HTML page. BroncoVote is
an open source project and the entirety of the code is
available for public use 6.

We assume the administrator, creators, and vot-
ers have the MetaMask plugin downloaded in their
browser or running an Ethereum node to create and
manage Ethereum accounts as well as interact with
our system. We utilize Ethereum’s Web3 frame-
work internally, this allows our users to easily man-
age signed transactions and interactions with the
Ethereum blockchain. Using MetaMask and Web3
eliminates the need for users to download full or even
partial Ethereum blockchains on their local machines
in order to broadcast transactions. The only action
required of users when registering, voting, or creat-
ing ballots is to use their passwords to unlock their
Ethereum accounts in the MetaMask plugin and se-
curely interact with the blockchain. If the user de-
cides not to utilize the Metamask plugin then they are
responsible for running a node on their local machine
and syncing it with the blockchain to interact with our
system using Web3.

A brief description of all the user parts of Bron-
coVote follows:

• Administrator is responsible for deploying the
initial Registrar and Creator smart contracts. The

6https://goo.gl/nqBpzM

administrator also has the ability to grant or re-
voke ballot creation permission for registered vot-
ers/creators.

• Voter registers in our system with a valid stu-
dent/employee ID and e-mail address to vote on
given ballot ID numbers.

• Creator is a voter with ballot creation permission.
A brief description of the front/back-end pages

implemented in BroncoVote follows:
• VoteUI.html page is the user interface for our

users. This page allows users to enter necessary
information for each of the different use cases.
Once the user enters the necessary information,
the corresponding click buttons will invoke func-
tions in App.js.

• VotingApp.js gathers information from Vo-
teUI.html and interacts with Crypto.js and the
Ethereum Blockchain. For each corresponding
request from VoteUI.html, it utilizes eth.calls,
Crypto.js server calls, and Ethereum transactions
to verify, encrypt/decrypt votes, and store bal-
lot/vote information.

• Crypto.js acts as a cryptographic server. All votes
are encrypted, homomorphically added, and de-
crypted using the Paillier homomorphic encryp-
tion system key pair in this server.
A brief overview of the smart contracts imple-

mented in BroncoVote follows:
• Registrar.sol acts as the record and gate keeper.

It keeps track of all registered voters and cre-
ators, ballot IDs, voting contract addresses, and
whitelisted e-mail domains. As we can see in Fig-
ure 1, information regarding the voter and differ-
ent ballots are linked together in the contract. This
allows the contract to perform voter verification,
permission modification, and Voting.sol address
retrieval. The owner of this contract is the admin-
istrator.

• Creator.sol acts as a spawner for different Vot-
ing.sol contracts. The Creator defines the voting

BroncoVote: Secure Voting System using Ethereum’s Blockchain

99

1

2

Voter/Creator enters their student/
employee ID, e-mail address, and
optional request for ballot creation in
UI and that info is sent to JS

JS sends eth.calls to the Registrar
Contract to verify Voter/Creator
information

3 If the verification is successful, JS
sends a transaction to the Registrar
Contract to register a new Voter/
Creator

2

Voter/Creator

JS UI

1 1

3

Registrar
Contract

Figure 2: The process for registering a voter in BroncoVote, where black dotted line represent eth.calls and solid line represent
transactions to the blockchain.

contract’s details when filling out the required in-
formation in VoteUI.html. The owner of this con-
tract is the administrator.

• Voting.sol acts as a virtual ballot and regulates the
voting on the ballot. Another set of voter verifica-
tion, that includes vote attempts and ballot time
limit, is also conducted in this contract. As we
can see in Figure 1, ballot title and the choice en-
crypted votes are also stored here so that we can
retrieve at later stages. The owner of this contract
is the contract’s creator.

3.2 Initial Setup

The administrator is responsible for the initial deploy-
ment of both the Registrar and Creator contracts to
activate the system and enable users to start register-
ing, voting, and creating new voting contracts. When
deploying the Registrar Contract, the administrator is
also responsible for whitelisting a set of e-mail do-
mains that are allowed to register to be part of the
voting system.

3.3 Register Voter

BroncoVote was created for a university setting.
Therefore, anyone with a student/employee ID num-
ber and an e-mail with the whitelisted domain is al-
lowed to register as a voter. When the voter com-
pletes the ID and e-mail field in VoteUI.html, then the

information is sent to VotingApp.js. As we can see in
Figure 2, the VotingApp.js makes eth.calls to the reg-
istrar contract to verify the domain provided is part of
the whitelist and if the user has previously registered.
If those checks are passed, then VotingApp.js sends a
transaction to the registrar contract to store the new
voter information, including the voter’s ID, Ethereum
address, and e-mail. It links the user’s Ethereum ad-
dress and e-mail address so that they cannot double
register. Individuals can also request access to create
ballots during the registration process; these requests
are planned to be manually processed by the adminis-
trator but currently are granted automatically.

3.4 Create Ballot

If the user has permissions to create a ballot, the user
is able to spawn a new voting contract by entering the
required information in VoteUI.html. In order to cre-
ate a ballot, the creator must provide their registered
e-mail address then decide whether to create an elec-
tion or poll, determine the title of the ballot, voting
options, and number of votes allowed per voter. Dur-
ing this process, the creator can also elect to have a
whitelisted ballot. If a whitelisted ballot is chosen,
the creator enters the list of e-mail addresses allowed
to vote on their ballot. If the creator chooses to not
make a whitelisted ballot, everyone with a e-mail ad-
dress that has the whitelisted domain will be allowed
to vote. Lastly, the creator sets the end date and time

ICISSP 2018 - 4th International Conference on Information Systems Security and Privacy

100

1

2

Creator enters ballot info in UI and
that info is sent to JS

JS sends a eth.call to the Registrar
Contract to verify Creator

If creator passes verification, a
transaction is sent to the Creator
Contract requesting to create a new
Voting Contract with the ballot info

3

4 Creator Contract sends a
transaction to create a new Voting
Contract

JS sends a eth.call to the Creator
Contract to retrieve the new Voting
Contract address

JS sends a transaction to the
Registrar Contract with the ballot
ID and contract address to register
the new ballot

5

6

Voting
Contract

Registrar
Contract

Creator
Conract

2

Creator

JS UI

1 1

3

4

6

5

Figure 3: The process for creating a ballot as a creator in BroncoVote, where black dotted lines represent eth.calls and solid
lines represent transactions to the blockchain.

of the election or poll.
After submitting this information, VotingApp.js

utilizes three eth.calls to verify the Creator and they
are condensed into one step in Figure 3. VotingApp.js
sends the first two eth.calls to the Registrar Contract
to verify the creator by checking if their e-mail ad-
dress is registered and if the request originates from
the registered Ethereum address. If those two checks
are passed, then VotingApp.js sends the third eth.call
to determine if the user has permission to create a bal-
lot. Afterwards, if it was determined the user was al-
lowed to create the ballot, VotingApp.js gathers the
input data along with a randomly generated ballot ID
number and sends a transaction to the Creator Con-
tract with a request to create a new Voting Contract
with the provided information. Once the new Voting
Contract has been deployed, the contract’s address is
returned to the Creator Contract.

VotingApp.js then sends another eth.call to the
Creator Contract to retrieve the new Voting contract
address and sends it as a transaction to the Registrar
Contract to store the new ballot ID and contract ad-
dress. The ballot ID is then displayed afterwards and
the creator must write down this ballot ID and pass it
along to all the voters in order to let voters vote on the
ballot.

3.5 Load Ballot

Using the ballot ID provided by the Creator of the Vot-
ing Contract, a voter can check the results or vote on
the ballot, provided the voting period has not passed.
Once the voter enters the ballot ID in VoteUI.html,
VotingApp.js sends an eth.call to the Registrar Con-
tract to determine the validity of the ballot ID. If the
ballot ID is valid, the voting options, title, and en-
crypted vote count for each choice if the voting pe-
riod has ended unless it is a poll. If the ballot type
was a poll then the results are displayed live. Before
the vote count can be displayed, there is another step
involved, which can be seen in Figure 4 as step 4,
that involves sending the encrypted vote count to the
Crypto.js server so that we can display the tallied vote
for each choice on VoteUI.html.

3.6 Vote

Once the ballot has been loaded, the user can vote for
a particular choice on the ballot with his/her registered
e-mail address. When the voter clicks vote, Votin-
gApp.js receives the information and sends eth.calls
to the Registrar Contract to verify the voter, it checks
the voter registration and Ethereum address. If the
voter is verified, an eth.call is sent to the Voting Con-
tract to check whether the ballot is whitelisted or not.

BroncoVote: Secure Voting System using Ethereum’s Blockchain

101

1

2

Voter enters ballot ID in UI and that is
sent to JS

JS sends eth.calls to the Registrar
Contract to retrieve the Voting
Contract address associated with the
ballot ID

3
JS sends a eth.call to the Voting
Contract associated with the
address and retrieves the choices
and encrypted vote count for each
choice

JS sends a request to the server to
decrypt the vote count

Server

Voter

JS UI

1 1

2

Registrar
Contract

Voting
Contract

3

4

4

Figure 4: The process for loading a ballot as a voter in BroncoVote, where black dotted lines represent eth.calls to the
blockchain and red dotted line represents decryption calls to the server.

If it is whitelisted ballot, then it will check to see if
the voter’s e-mail is part of the whitelisted voter list.
Afterwards, the voting choice is verified and the num-
ber of vote attempts made by the voter as well as time
limit on the ballot, which is checked by comparing
the end time with the current block timestamp, are
checked; if the user has not met the limit and the bal-
lot voting period has not ended, then the vote is passed
in as a 1 for the chosen vote option chosen and 0s for
the rest of the voting options. As we can see in Fig-
ure 5, the current vote is encrypted first so that we
can retrieve the encrypted vote count from the Voting
Contract and homomorphically add them to get the
new total vote count. So the vote is sent to Crypto.js
server to be encrypted using the previously generated
public key in Crypto.js server. Once all the votes have
been encrypted, the previously encrypted vote count
for every choice is retrieved using an eth.call. Then
the current encrypted votes and previously retrieved
vote count are sent to the Crypto.js server to be homo-
morphically added together. Then the new encrypted
vote count for every choice is then sent as an array in
a transaction to the Voting Contract.

3.7 Get Votes

getVotes acts as a data retrieval function. Whenever a
user loads the ballot or successfully votes on a ballot,
getVotes is invoked in VotingApp.js. getVotes sends
an eth.call with the hashed choices to get the current

total encrypted votes. Depending on the timelimit and
election type, it would either decrypt the votes and
display them or display the time when users can check
back for the results. To decrypt the votes, getVotes
sends the encrypted vote count to the Crypto.js server
to be decrypted by the private key.

4 TESTNET EXPERIMENT
ANALYSIS

Our implementation was deployed on the Ropsten
Ethereum testnet to collect data on gas and time costs
for each use case in our system. Though we envi-
sion our system to be part of a private blockchain, we
chose to do the experiments on the testnet to simulate
a mature blockchain. We focused on gathering gas
costs for each process since it can be translated into
performance data. This allows us to get estimated
performance data in the later stages of our system
deployment. We conducted experiments on varying
styles of ballots and specified the gas and time costs
for every user, including Administrator (A), Creator
(C), and Voter (V), involved in our system.

The Administrator deploys the Registrar and Cre-
ator contracts as part of the initialization step and their
deployment gas costs are shown in Table 6. Registrar
Contract gas cost can vary depending on the size of
the whitelisted domain list chosen by the Administra-
tor.

ICISSP 2018 - 4th International Conference on Information Systems Security and Privacy

102

4

1

2

Voter enters the choice they want to
vote for and his/her e-mail address in
UI and that info is sent to JS

JS sends eth.calls to the Registrar
Contract to verify Voter

If the voter passes verification, JS
sends eth.calls to the Voting Contract
to check voter status and ballot time
limit

If the voter passes the checks, his/her
vote choice is sent to the server to be
encrypted

3

5 JS sends a eth.call to the voting
Contract to retrieve the current
encrypted vote count

JS sends the current encrypted
vote count and voters encrypted
vote to the server to be added
together

JS sends a transaction to the Voting
Contract to store the new
encrypted vote count

6

7

Server

Voting
Contract

Registrar
Contract

Voter

JS UI

1 1

2

4

3

5

6

7

Figure 5: The process for voting on a ballot as a voter in BroncoVote, where black dotted lines represent eth.calls, black solid
lines represent transactions to the blockchain, and red dotted lines represent encryption calls to the server.

Figure 6: Gas costs for initial contract deployment to the
blockchain for system activation.

Following the initialization step, our next phase in
experimentation was creating, loading, and voting on
different types of ballots with varying sizes of vot-
ing options and whitelisted voters. All the ballots cre-
ated in our experiments are elections but there isn’t
a noticeable difference present in cost for choosing
polls. The gas costs for those tests can be viewed in
Table 7. The number of ASCII characters in the data
being passed into the contracts has a noticeable effect
on the gas cost so we used an average ASCII char-
acter length of 10 for ID numbers, 12 for voting op-
tions, and 25 for e-mail addresses. Registering a voter
is not dependent on the ballot; therefore, the cost only
fluctuates slightly based on the length of the e-mail

address as well as the student/employee ID. In the Ta-
ble, we did not disclose the cost for registering a cre-
ator but we did gather the costs of being a creator,
and it is approximately 10,000 gas with the same cost
variation depending on the length of the e-mail ad-
dress used. As can be seen in the Table 7, an increase
in the number of voting options by two increases the
cost for creating a non-whitelisted ballot by approxi-
mately 200,000 gas and the cost for voting increases
by 10,000 gas per additional voting option.

We created a graph (Figure 8) to show the increase
in gas cost for creating and voting on the ballot as vot-
ing options on the ballot increase. We used the calcu-
lated rate of change in cost as voting options increased
to plot the graph and spot checked the calculated re-
sults at different voting option counts to verify that the
results were close to the expected results. Currently
the Ropsten Ethereum testnet has a block gas limit of
4,700,000 gas so we were able to achieve a ballot with
max ballot options of 32 without whitelisted voters. If
this system was deployed on a private blockchain with
modified block gas limit then we could have larger
ballots.

We also conducted a time cost analysis on how
long, in seconds, each use case would take and the

BroncoVote: Secure Voting System using Ethereum’s Blockchain

103

Figure 7: Gas costs collected from the conducted experiments on the testnet with varying types of ballots.

Figure 8: The average change in gas cost based on the num-
ber of voting options on the ballot.

results for that are shown in Table 3. We computed
the time from when the initial button was clicked un-
til the transaction was mined and verified. We con-
ducted time analysis on the same set of ballots that
we created for our gas cost analysis so we could get
accurate estimated time costs. The results do vary sig-
nificantly on each of the use cases that require sending
transactions and requires mining due to the mining
process. During the mining process the miners can
choose which transactions to pick up and the block
confirmation time may also vary depending on the
hardware used for the mining process. As we can
see from the results, the Load Ballot takes the least
amount time due to it only using eth.calls to retrieve
ballot information and not going through the mining
process where as Create Ballot takes the longest on
average since it requires sending a few transactions to
the smart contracts to create and setup ballots.

5 TECHNICAL DIFFICULTIES

Due to the nature of the Solidity programming lan-
guage, the implementation of BroncoVote encoun-

tered a few technical difficulties. One such difficulty
is support for cryptography: the maximum data value
in Solidity is unsigned int of 256 bit. The major-
ity of encryption protocols require much larger inte-
ger numbers than are supported in Solidity. There-
fore, BroncoVote’ cryptography is completed through
a server, which may adds a vulnerability. However,
for our purposes, we assumed the server is secure and
not compromised. Solidity also lacks proper debug-
ging tools. In order to debug smart contracts, we uti-
lize Remix, an integrated development environment
for Solidity 7. To debug a transaction, Remix uses ei-
ther the transaction’s hash or the transaction’s block
number and index. From there, Remix provides de-
tails regarding the transaction’s execution, including
local and state variables, storage changes, and return
values 7 . Allowing a user to go through each step of
the contract’s execution expedites the process of de-
bugging and, therefore, the completion of the contract
and system.

6 RELATED WORKS

Correctness and privacy has been a predominant con-
cern in election processes. McCorry et. al (Mc-
Corry et al., 2017), Zyskind et al. (Zyskind et al.,
2015), Barnes et al. (Andrew Barnes and Perry, 2016),
Ernest (Ernest, 2014), and Varshneya (A.J. Varsh-
neya, 2015) discuss various methods to utilize the
blockchain to ensure data integrity. In (McCorry
et al., 2017) zero knowledge proof is implemented to
protect data privacy and authenticate users before de-
termining the result of the election. (Andrew Barnes
and Perry, 2016) and (Ernest, 2014) apply symmet-

7https://media.readthedocs.org/pdf/remix/latest/remix.pdf

ICISSP 2018 - 4th International Conference on Information Systems Security and Privacy

104

Figure 9: Time costs (in seconds) collected from the conducted experiments on the testnet with varying types of ballots.

ric encryption to data; additionally, data is segmented
on the blockchain in (Andrew Barnes and Perry,
2016). (A.J. Varshneya, 2015) analyzes two separate
voting systems, Follow My Vote and BitCongress.
Although the Follow My Vote protocol has not yet
been integrated with the blockchain, this online vot-
ing platform encrypts data with symmetric encryp-
tion. In Follow My Vote, users are only identifiable
on the blockchain through addresses and are there-
fore essentially anonymous; however, central authori-
ties such as the government are able to identify users.
BitCongress relies on proof of work and proof of tally
to maintain data integrity. To authenticate a voter,
users sign their votes with their digital signatures be-
fore encrypting the vote with their candidate’s public
key. BitCongress’s Whitepaper (Rockwell, 2015) de-
tails the system’s privacy features. For instance, al-
though the action of sending a vote to a candidate is
public, other nodes in the system are not able to trace
the vote or election to any particular node. New key
pairs are also generated for each election to increase
the difficulty of data forensics. BroncoVote applies
partial homomorphic encryption to secure the privacy
of voters and their votes on the blockchain.

(Zyskind et al., 2015) introduces a peer-to-peer
network called Enigma. This network connects to
the blockchain and retrieves private and computation-
ally intensive data from the blockchain and stores
these records off-chain. A system utilizing Enigma
has three decentralized databases: the blockchain’s
public ledger, a distributed hash table to store off-
chain encrypted data, and multi-party computation
that distributes randomly partitioned data among ran-
dom nodes. Secure multi-party computation is ap-
plied to create data queries without revealing raw data

to nodes in the network. In a multi-party computation,
data is randomly split among a random set of nodes in
the system and these nodes process their piece of data
without sharing information among each other. Data
integrity and privacy is enhanced by the Enigma net-
work and its multi-party computations by dividing the
processing of data among a random subset of nodes in
the system, safeguarding access to the complete, raw
information. In order for an information leak to occur,
collusion among the majority of the nodes selected to
process the data would be required (Zyskind et al.,
2015). The private blockchain employed by BroncoV-
ote establishes a closed voting system to protect vot-
ers from outside privacy breaches. The homomorphic
encryption mentioned above safeguards voter privacy
from attacks within the system.

Smart contracts automate the voting process
in (McCorry et al., 2017) and (Zyskind et al., 2015).
Two smart contracts are implemented in (McCorry
et al., 2017): a Cryptography Contract and a Vot-
ing Contract. The Cryptography Contract creates the
code necessary for zero knowledge proofs while the
Voting Contract manages the election process and the
verification of the zero knowledge proofs. Because
every node in the system runs each smart contract to
reach an agreement on the contract’s output, voters
can rely on this consensus to achieve data integrity
instead of executing the code themselves. Similar to
smart contracts, private contracts in (Zyskind et al.,
2015) are applied to enhance the system’s scalability.
These contracts are designed to process the system’s
private information. Three smart contracts are utilized
in BroncoVote: a Creation Contract, Voting Contract,
and Registration Contract. The Creation Contract es-
tablishes the poll or election; once this contract is de-

BroncoVote: Secure Voting System using Ethereum’s Blockchain

105

ployed, it can be used to create multiple, different bal-
lots. The Registration Contract lists the eligible vot-
ers; and the Voting Contract allows eligible voters to
vote for a candidate.

User interfaces ease a voter’s experience. For
instance, (McCorry et al., 2017) created three po-
tential HTML5/JavaScript pages voters can access
through a browser. This ease of use and access in-
creases the system’s probability of adoption. Bit-
Congress (A.J. Varshneya, 2015) utilizes an applica-
tion called Axiomity as the graphical user interface
through which users create elections and vote; Ax-
iomity also keeps a voting record history for users to
review on demand. Similarly, voters in the BroncoV-
ote system cast their ballots through an HTML web-
site.

The voting processes in (McCorry et al.,
2017), (Rockwell, 2015), (Andrew Barnes and Perry,
2016), (Ernest, 2014), and (A.J. Varshneya, 2015)
are described below. The system in (McCorry et al.,
2017) executes in five stages. In the first stage, the
election administrator creates a list of eligible vot-
ers and creates the election, including setting the
election’s applicable timers, registration deposit, and
the optional commit stage. Next, voters register for
the election. The next stage is the optional commit
stage, where voters store a hash of their vote onto the
blockchain before progressing to the stage where they
publish their vote and a zero proof of knowledge onto
the blockchain. Lastly, the result of the election is
computed and revealed. It is important to note that
in this system, voters can only vote for two options,
typically “yes” or “no” (McCorry et al., 2017).

A similar process is followed in Bit-
Congress (Rockwell, 2015). In BitCongress,
every “yes” or “no” token and candidate has an
address. Voters send their tokens to a candidate’s
address; once the election ends and the results are
tallied, the tokens are returned to the voters. The
system outlined in (Andrew Barnes and Perry, 2016)
supports on-line and off-line voting; this system uses
two separate blockchains: one to store registered
voters and one to store the actual votes. By using
two separate blockchains, (Andrew Barnes and
Perry, 2016) ensures voter privacy and anonymity.
Regardless of how a voter registers (whether on- or
off-line), the same information is required such as
their social security number and mailing address.
Assuming the voter decides to vote on-line, the
voter’s registration is stored on the blockchain for
government miners to verify the voter. Once verified,
the voter is sent a ballot card and password to
submit a vote, which is stored on the blockchain as
a transaction. In both (Ernest, 2014) and Follow

My Vote discussed in (A.J. Varshneya, 2015), voters
can access and update their vote until the end of the
election. Additionally, in Follow My Vote, voters
can vote for multiple candidates. An election in
BroncoVote is established when an administrator in
the system deploys the Creation Contract in order to
set up the ballot; this include defining the candidates
of the election and the election timer. Next, the
administrator defines within the Registrar Contract
who is eligible to register. Lastly, the voters cast their
ballots through the Voting Contract, which encrypts
each ballot to provide security and privacy to the
voters. Unlike the systems in (McCorry et al., 2017)
and (Rockwell, 2015), BroncoVote allows users to
vote for multiple candidates.

BroncoVote is currently a university-scaled voting
system employed on the Ethereum Blockchain. Voter
privacy is handled by homomorphic encryption; in-
tegrity of votes is ensured through passwords. To
guarantee voter accessibility, voters cast their votes
on an HTML website that can be accessed anywhere
with Internet access. BroncoVote also has the abil-
ity to be used to conduct polls: similar to elections,
polls allow individuals to voice opinions on matters.
However, individuals are able to view poll statistics
in real-time. BroncoVote is a secure, economical vot-
ing system with the potential to be expanded from a
university scale to a larger scale.

7 CONCLUSIONS AND FURTHER
WORK

In this paper, we have presented a proof of con-
cept system for BroncoVote that utilized the Ethereum
blockchain and Paillier homomorphic encryption.
Our implementation was tested on the Ethereum test-
net network with different types and sizes of bal-
lots. BroncoVote used the smart contracts in Ethereum
blockchain to keep a record of every user in our sys-
tem as well as all the ballots and the information re-
garding them. We also utilized the smart contracts to
achieve access control. We integrated Paillier homo-
morphic encryption into our system to preserve voter
privacy. With the deployment of our system on the
testnet for experiments we showed that our system
can easily be deployed and setup to use as a voting
system for universities or other similar settings.

In future work, we will investigate the possibility
of implementing Paillier cryptosystem as a library in
Solidity. With the system we currently have, moving
the cryptography to a library in Solidity could largely
improve our individual ballot verifiability. Having the
Paillier library in Solidity would help us generate a

ICISSP 2018 - 4th International Conference on Information Systems Security and Privacy

106

new private and public key for each ballot. This will
help us achieve individual voter audit on different bal-
lots without compromising the other ballots. To in-
crease user accessibility, we will also look into in-
tegrating the Ethereum Lightwallet into our system
will allow users to unlock their accounts in our UI
without needing to run a node or plugin. Finally, to
help with voter verification, we will try to integrate
an API/process that will allow us to check the validity
of all e-mails used to register into our system.
This research was supported by the US National Sci-
ence Foundation (NSF) under grant CNS 1461133
and the Information Security, Privacy, and Mining
(ISPM) Research Lab.

REFERENCES

(2016). Blockchain technology in online voting. Web.
Adida, B. (2008). Helios: Web-based open-audit voting. In

USENIX security symposium, volume 17, pages 335–
348.

A.J. Varshneya, Sugat Poudel, X. V. (2015). Blockchain
voting.

Andrew Barnes, C. B. and Perry, T. (2016). Digital voting
with the use of blockchain technology.

Atzori, M. (2015). Blockchain technology and decentral-
ized governance: Is the state still necessary?

Buterin, V. (2015). On public and private blockchains.
Ethereum Blog, 7.

Buterin, V. et al. (2013). Ethereum white paper.
Ernest, A. K. (2014). The key to unlocking the black box:

Why the world needs a transparent voting dac.
McCorry, P., Shahandashti, S. F., and Hao, F. (2017).

A smart contract for boardroom voting with maxi-
mum voter privacy. IACR Cryptology ePrint Archive,
2017:110.

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic
cash system.

OKeeffe, M. (2008). The paillier cryptosystem: a look into
the cryptosystem and its potential application. College
of New Jersey.

Rockwell, M. (2015). Bitcongress whitepaper.
Tarasov, P. and Tewari, H. Internet voting using zcash.
Wang, W., Hu, Y., Chen, L., Huang, X., and Sunar, B.

(2015). Exploring the feasibility of fully homomor-
phic encryption. IEEE Transactions on Computers,
64(3):698–706.

Xun Yi, Russell Paulet, E. B. (2014). Homomorphic En-
cryption and Applications. Springer International
Publishing.

Zyskind, G., Nathan, O., and Pentland, A. (2015). Enigma:
Decentralized computation platform with guaranteed
privacy. arXiv preprint arXiv:1506.03471.

BroncoVote: Secure Voting System using Ethereum’s Blockchain

107

