
A Model-driven Approach for Generating RESTful Web Services in
Single-Page Applications

Adrian Hernandez-Mendez, Niklas Scholz and Florian Matthes
Technical University of Munich, Department of Informatics, Munich, Germany

Keywords: Model-driven Software Engineering, Web Services, Single-Page Application, Resource Oriented Architec-
ture, RESTful APIs.

Abstract: Modern Single-Page Applications (SPA) use data from multiple Web services to support essential process in
the enterprises. By using data from several Web services, the SPA changed their architecture from a one-
to-one communication between client and server to an application using information from multiple servers
using RESTfuls APIs in a microservice architecture. In this paper, we present a model-driven approach for
the consumption of RESTful Web services in SPA. We introduce a Query Service meta-model and provide a
tool to semi-automatically generate an SPA based on our reference architecture. The proposed approach was
evaluated by using the tool for the development of an example application in the context of a research project
with large German corporation in the domain of software architecture. The main limitation of the tool is the
lack of support for the round-trip engineering functionality. However, the created Web service handles the
access to APIs and reduces the complexity of the SPA due to the shift of responsibility away from the client.

1 INTRODUCTION

Nowadays, Single-Page Applications (SPA) support
relevant processes in the enterprises, and they are not
limited to show static information to the users. Ad-
ditionally, their architecture has changed from a one-
to-one communication between client and server to a
client using information from multiple servers using
RESTfuls APIs in a microservice architecture. Ex-
amples can be seen in digital companies such as Net-
flix and Airbnb, where their websites are supported
by the integration and collaboration between several
services.
Using several services in an SPA introduces new chal-
lenges in the implementation. Particularly, when a
service was designed by a third-party, which implies
that the provided data does not entirely fit the SPA
needs. Consequently, the data has to be transformed
on the client side. This data transformation pro-
cess leads to increase the complexity of the SPA, es-
pecially when scaling up the number of services to
consume, which could lead to compromises the SPA
agility and changeability.
We envision an approach to reduce the SPA archi-
tecture’s complexity by shifting the responsibility of
managing the integration of multiple services from
the SPA to a single RESTful Web service. Thus, the

SPA just requires managing one service to receive all
the needed information. This service provides the
data exactly as needed by the client so that no further
transformation is necessary and the developer obtains
a lightweight SPA.
In this paper, we introduce a model-driven approach
to automate the implementation of the consumption
of RESTful Web services. We, therefore, develop a
model which describes the required artifacts to con-
sume RESTful services in single page applications.
Subsequently, we present a transformation process
where an application developer has to specify the
transformation rules. The result of this process is a
generated service that handles the RESTful Web ser-
vice consumption for the client.
We have adopted a design science research approach,
for the conceptualization of the model-driven ap-
proach as a design artifact. According to Hevner’s
three-cycle view of design science Hevner (2007), our
research contributes in the following ways to each of
the cycles.
Relevance Cycle: We stimulate discussions regarding
complexity in the development of SPA with our indus-
try partners in the context of a research project with
large German corporation in the domain of software
architecture. Thereby, we establish the need for a for-
mal process for analyzing and extending the service

480
Hernandez-Mendez, A., Scholz, N. and Matthes, F.
A Model-driven Approach for Generating RESTful Web Services in Single-Page Applications.
DOI: 10.5220/0006608204800487
In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), pages 480-487
ISBN: 978-989-758-283-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



model based on existing SPA prototypes.
Design Cycle: We present the conceptualization of
the model-driven approach, a query service model,
and a reference architecture as our design artifacts.
Rigor Cycle: We have studied and evaluated the lit-
erature on existing approaches to model the RESTful
Web services. In addition to the proposed model and
reference architecture, we contribute to the knowl-
edge space by providing a theoretical framework to
discuss with industry partners and the research com-
munity in the MDD area.

2 RELATED WORK

Model-Driven Software Development (MDSD) has
proven to be a good approach for managing com-
plexity by enhancing the level of abstraction Völter
et al. (2013). It also improves the software qual-
ity and increases the development speed. In MDSD,
the development process is driven by formal mod-
els which will then be automatically transformed to
code. The starting point is a platform independent
model (PIM) which models the system regarding do-
main concepts and is independent of an implementa-
tion Lano (2009). This way, the developer can focus
on specifying where the data for the client comes from
and does not get carried away with the technical de-
tails of the service consumption.
Interesting solutions have been published in the field
of MDSD which also focussed on Web services. Sev-
eral approaches deal with modelling RESTful Web
services services and transform them to code (Haupt
et al. (2014), Ed-Douibi et al. (2015), Bonifacio et al.
(2015) and Rossi (2016)). However, the focus of these
approaches is generating the services on the server in-
stead of the user of them by the clients (i.e., SPA). Our
approach, on the contrary, focuses on the client-side
by presenting a model-driven approach dealing with
the consumption of RESTful Web services.
The challenge of managing multiple web services
consumed by one application is not relatively new
and has already been addressed by several other ap-
proaches. For example, the Service Oriented Archi-
tecture (SOA) is addressing this challenge by provid-
ing an enterprise service bus (ESB). The ESB acts
as the backbone of the application and allows inte-
gration and management of services in an application
(Chappell (2004)). Also API management tools such
as apigee1 or WSO22 support the usage of multiple
APIs. Both also provide a gateway for APIs (sim-
ilar to our Query Service), allow API management,

1https://apigee.com/api-management/
2http://wso2.com

as well as several other functionalities. These ap-
proaches, however, focus on the actual management
of existing RESTful APIs, whereas our approach tar-
gets the development of SPA.
Additionally, in Gadea et al. (2016) an approach al-
lows real-time management of microservice APIs is
presented and a reference architecture for the con-
sumption of RESTful APIs. This approach allows
adding and removing APIs during runtime. However,
a client-side code for the consumption of REST APIs
is not considered in the approach.

3 MODELING THE RESTFUL
WEB SERVICES

Consuming data from several different APIs leads to
complexity in the client. To counteract this complex-
ity, our approach proposes to shift the responsibility
of the API consumption outside of the client. We
introduce a Query Service which handles requests to
RESTful Web services and the subsequent data trans-
formation. This Query Service provides one single
interface for the client and supplies the data exactly
as needed by the client. Therefore, data transforma-
tion operation in the SPA is not further required. 1
gives an overview of such an architecture.

Single Page 
Application

Web 
Service 1

Web 
Service n

Web 
Service 2

Data 
Transformation

Query Service

Backend

Frontend

. . .

Figure 1: Architectural overview of a web application using
the Query Service.

The Query Service is an instance which runs sepa-
rately from the client and can be regarded as a web
service. For the client, it seems to be the backend
of the web application since this is the place to get
the data from and the only service to communicate
with. The Query Service hides the complexity of
accessing several different services from the frontend.

A Model-driven Approach for Generating RESTful Web Services in Single-Page Applications

481



3.1 The Query Service Model

The Query Service meta-model reveals what informa-
tion is needed to conduct CRUD operations on REST-
ful APIs. To establish this meta-model, the client-side
applications and how they handle their data transfer
with the backend were inspected and evaluated. For
example, in Angular3 we evaluated the current imple-
mentation of the Angular services.
2 shows the meta-model of the Query Service. A
Query Service contains general information about the
server such as a name, description, author and on
which port it should run for the development process.
It also needs to specify a data model, this is the data
model of the frontend, and it is used by the Query
Service to define the return type of a resolver or an ar-
gument type passed to the resolver function. Hence, it
is needed to know how to provide the data to the view.
A Query Service also consists of several resolvers.
Those resolvers are functions which represent the API
for the client by providing CRUD operations on data
to the client. It can be called by the name of the re-
solver and by potentially passing arguments along.
Since the Query Service just manages access to sev-
eral different RESTful Web services a resolver also
needs an API request. This is the part which handles
the communication with a RESTful API to provide
the data transfer supplied by this resolver. The API
request contains the URL of the API and may include
several query- and URI parameters. Each API request
also contains an HTTP Method (GET, POST, PUT,
etc.). Where applicable, header parameters, a body
and/or authentication need to be passed along with
the request.

4 MODEL-DRIVEN APPROACH
FOR GENERATING RESTFUL
WEB SERVICES

To develop the RESTful Web Services, we propose a
semi-automatic process which is driven by the meta-
model described in 3. 3 gives an overview of the pro-
cess which is accomplished with the help of a web
application. It is composed of four steps: (1) con-
struction of the model by the developer using the UI
of the application resulting in a platform independent
model (PIM), (2) transformation of the PIM to a plat-
form specific model (PSM) to support the format of
a GraphQL4 server, (3) code generation based on the
PSM, and (4)manual code refinement bythe developer.

3https://angular.io
4http://graphql.org

4.1 Design Decisions

To provide a practical implementation of the architec-
ture presented in 3, we provide a semi-automatically
generated Query Service. We chose to implement it
as a GraphQL server. GraphQL is a query language
for APIs. This allows the client to send much more
powerful queries to the API then it would be possi-
ble with an ordinary REST request. The client can
exactly specify the structure of a data entity it wants
to be returned. Like this, the client does not have to
transform the data if it wants a different structure as
designed by the API. This also leads to less complex-
ity in the client.
As the server we chose NodeJS5 since it is conve-
nient to configure and ensures a lightweight server. To
make this GraphQL-based server, we used Apollo6,
which is a framework for implementing a GraphQL
server.

4.2 Model Construction

The generation process of the Query Service starts
with the model construction. This is a semi-automatic
step since the developer has to specify the model ac-
cording to his/her needs. The model construction is
supported by the interface of the web application. The
meta-model from 3 is represented as a user form in
the interface which then has to be filled out by the de-
veloper. For example, the developer has to define the
data model and the different APIs to access to resolve
the data. After the developer finished constructing an
instance of the model it is stored in a JSON object for
further process of the application.

4.3 Model Transformer

The next step is a model-to-model transformation
as the PIM has to be transformed to a PSM. This
is just an interim step for the code generation and
therefore invisible to the developer. A PSM is based
on a concrete platform Völter et al. (2013). In our
case, this platform is the GraphQL server. The
model which was constructed in the previous step,
thus, needs to be transformed to a certain structure
to be able to generate the platform afterward. A
GraphQL server is specified by defining a schema
and resolvers. The GraphQL schema defines which
queries can be sent by the client, hence, describes
the API of the GraphQL server. It specifies the data
types, functions to get data (so-called queries) and
functions to alter data (so-called mutations). The

5https://nodejs.org/
6https://www.apollodata.com

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

482



Query Service Model Query Service

name: String
description: String
author: String
port: Int

Data ModelResolver
name: String
return type: String

API Request

body: String

Argument
name: String
type: String
required: Boolean

11..*

0..*1..*
Entity

name: String

Parameters
name: String
type: String

1..*

1..*HTTP Method Authentication
username: String
password: String

Header Parameter
name: String
value: String

1

GET

POST

PUT

DELETE

HEAD

OPTIONS

0..* 0..1

Query Paramers
name: String
value: String

0..*

URL
protocol: String
host: String
path: String

URI Paramers

name: String

0..*

1
CONNECT

PATCH

TRACE

Figure 2: Meta-model of the Query Service.

Service Model 
(PIM)

model 
transformation
(automated)

code
generation

(automated)

GraphQL Service Model
(PSM)

construct model 
using the editor

(semi-automated)
Service Meta Model

code
refinement
(manual)

source code

1 2

3

4

Figure 3: Overview of the model transformation process.

GraphQL resolvers determine the data transfer for
each one of the queries and mutations.
Accordingly, we need to construct this schema and
the resolvers in the format as specified by GraphQL
Facebook (2016). That is why the model transformer
consists of a schema-builder and a resolver-builder
which both take the PIM as input to extract the
information from there. The definition of the data
types for the GraphQL schema can be extracted from
the data model. The queries and mutations definition
in the schema can be derived from resolver (name and
return type), argument and HTTP method (reveals
if it has to be defined as a query when it is a GET
method or as a mutation otherwise). Information
for GraphQL resolvers is extracted from everything
related to the resolver in the Query Service model.
Since we are using a NodeJS runtime, we realise

the API requests as http.request7 and
https.request8 functions, respectively.

4.4 Renderer

The third step is a model-to-code transformation.
Alike the previous step the renderer is also an au-
tomatic process and therefore, invisible to the de-
veloper. Four files (schema.js, resolvers.js
,package.json and server.js) are rendered and
subsequently exported by the web application. This
process is supported by the template system mus-
tache9. The mustache templates contain the static
content, meaning the code that needs to be in the
files no matter how the constructed model looks like.
Those templates also indicate where the variable con-
tent needs to be placed. The contexts are the variable
code parts which are represented by the model from
the previous step. Those get rendered into the mus-
tache templates, resulting in the four code files. They
contain the following elements from the model of the
previous step.

schema.js As the name reveals, schema.js contains
the GraphQL schema. Hence, it holds the data

7https://nodejs.org/api/http.html
8https://nodejs.org/api/https.html
9https://mustache.github.io

A Model-driven Approach for Generating RESTful Web Services in Single-Page Applications

483



model and information about what query and mu-
tation functions exist.

resolvers.js The resolver functions which were con-
structed in the previous step are embodied in this
file.

server.js The only information the server.js file
contains from the model is the port. This file is
the core of the server and includes schema.js and
resolvers.js.

package.json The package.json file is important to
manage locally installed packages for the server.
However, it also contains general information
about the application from the model such as the
name, description and the author.

These four files are sufficient to have a runnable
server. The application developer just has to run the
commands npm install and npm start in the di-
rectory of the output folder, and the GraphQL server
will locally run on the specified port.

4.5 Code Refinement

In MDSD 100% code generation is only for excep-
tional cases possible (Völter et al. (2013)). Thus, such
a process almost always includes a step carried out
manually by the application developer.
In our process, this manual step relates to the re-
solvers. The code that needs to be added manually
specifies what happens after the API request com-
pleted. Most likely the developer might want to trans-
form the data coming from the RESTful Web ser-
vices. Accordingly, the received data needs to be
mapped to the data model expected by the client.
It was not possible for us to model this data trans-
formation after the API request without restrictions
to common use cases. The problem is that the trans-
formation rules need to be specified by the developer.
Only he/she knows what part of the received data be-
longs to what part of the target data model. Especially
when merging data from several APIs to one entity,
this seems to be a step that cannot be done automati-
cally.

4.6 IMPLEMENTATION &
ARCHITECTURE

The Query Service creator tool is a React10 web ap-
plication which implements the code generation de-
scribed in the previous section. An overview of the
architecture of the web application is represented by
4.

10https://facebook.github.io/react/

QueryServiceCreator

<<use>>

<<use>>

React Components (jsx)
modelTransformer

coderGenerator

resolversModel

appControl

dataModel

serviceConfig

Figure 4: Architecture of the Query Service creator tool.

The appControl component is the center of the appli-
cation and directs the program flow. The user inter-
face is divided into three elements of the Query Ser-
vice model: the general service information, the data
model, and the resolvers. Those three elements are
represented by the react components: serviceConfig,
dataModel, and resolversModel. Each one of these
components consists of a web form which is being
filled out by the application developer to construct the
relating part of the model.
5 displays the dynamic behavior of the tool. After the
developer submits the model instance, the appControl
component passes it along to the modelTransformer to
transform it suitable for the GraphQL server by con-
structing the schema and resolver functions.
Once the model is in the correct format, the files
can be rendered by the codeGenerator. Therefore,
the appControl passes the JSON object constructed
by the modelTransformer which holds the model
information to the codeGenerator. Subsequently,
the codeGenerator creates the files (schema.js,
resolvers.js, server.js, and package.json),
renders the mustache templates with the JSON object,
and writes the output to the created files.

5 EXAMPLE SCENARIO

In this section, we evaluate our approach by present-
ing an example web application which is being im-
plemented with the help of our tool. Firstly, we ex-
plain the functionality of the web application to de-
velop, followed by a description of the development
process realized with our tool. We conclude this sec-
tion by analyzing the development process and stating
the limitations on the code generation tool.

5.1 Scenario

The main functionality of this example web applica-
tion is to provide statistics about completed software
projects related to an organization and make predic-
tions based on this data for future projects.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

484



ui: UserForm appControl: AppControl cg: CodeGeneratorDeveloper

Specify Model
submit(serviceModel)

generateServer(graphQLServiceModel)
output files

server
.js

package
.json

schema
.js

resolver
.js

mt: ModelTransformer

transformToGraphQLModel(serviceModel)
constructSchema()

constructResolver()

graphQLServiceModel

Figure 5: Sequence diagram of the Query Service creator tool.

6 shows a mockup of how a view of such an applica-
tion could look like. The user interface is structured
as a master-detail view and provides a list of all the
software projects. When a user clicks on a project,
more details and statistics about it will be shown. The
project statistics contain values such as the total du-
ration of the project, the average duration per issue,
the total number of lines of code added/deleted, and
the average number of lines of code added/deleted per
commit. Additionally, in the project detail view, all
issues related to this project are listed. Once clicked
on an issue more details to this issue will be pro-
vided such as the number of lines of code which were
added/deleted to complete the issue.
Based on the statistics from the projects the app pre-
dicts the workload of future projects. General infor-
mation about the projects and issues can be received
from the JIRA API given that the organization utilizes
JIRA as a project management tool. Code related data
is being provided by the GitHub API assuming the or-
ganization uses GitHub as a project repository.
For the sake of evaluating our code generation tool
we just consider the part of the development process
which relates to the consumption of the JIRA and
GitHub API. Other development steps such as the user
interface implementation are not relevant for us.

5.2 Development Process

We start the implementation process by constructing
an instance of the Query Service model with the help
of the tool presented in 4.

Data from the JIRA API Data from the GitHub API

Figure 6: Mockup of the example web application and
where its data comes from.

5.2.1 Data Model

Initially, we enter the general information about the
web service we are going to generate (name, author,
etc.). Subsequently, we have to think about the data
model for the client side. To present the data in a web
application as stated in the previous section, we come
up with two entities: Project and Issue (cf. 7).
The Project entity contains general information about
the project as well as statistics. For example, it
holds information about the number of lines of code
added/deleted. The project also consists of issues.
The Issue entity contains information and statistics
about a specific issue.

A Model-driven Approach for Generating RESTful Web Services in Single-Page Applications

485



Project
projectId: String
name: String
description: String
nrIssues: Int
totalDuration: Float
averageDuration: Int
nrCommits: Int
totalLocAdded: Float
totalLocDeleted: Float
averageLocAdded: Int
averageLocDeleted: Int

Issue
issueId: String
summary: String
type: String
timeSpent: Int
nrSubtasks: Int
locAdded: Int
locDeleted: Int

1 *

Figure 7: Data model of the example web application.

5.2.2 Resolver

As a next step, we define the resolver functions
to specify from what APIs the data for the entities
comes from. Three resolver functions are necessary:
getProjects to return a list of all software projects,
getProject to return data of one specific project in-
cluding its issues, and getIssue to retrieve detailed
information related to that issue. We are not explain-
ing all three resolver functions but present the speci-
fication of getProject as an example.
Firstly, we enter the resolver name (getProject) and
the return type (Project) and specify that we need the
projectId as an argument for the function to be able
to retrieve the correct project. Since we are using the
JIRA project key as our id, the type is a String. Subse-
quently, we specify the APIs to consume to fetch the
data related to the project.

JIRA API We need to access the JIRA API to re-
trieve the general information about the project as
well as the issues related to it. As a query parame-
ter, we pass along the projectId (the function argu-
ment). We also need to add authentication (user-
name and password) to be able to access the data.

GitHub API We use the GitHub API to get statis-
tics about the project’s repository. In the URL we
pass the name and owner of the repository along
as URI parameters.

The other two resolver functions need to be specified
accordingly. The code can be generated when all the
required fields are complete.

5.2.3 Manual Code Refinement

To finish the development of the Query Service, the
generated code needs to be refined manually. There-
fore, we need to add code in the resolver functions
to specify what we want to happen after each API re-
quest completed. We extract the data that is needed

in the client from each API response and return it.
In some cases, we also need to do some calculations
such as compute the average number of lines of code
added per issue.
Now the server is in place and can be started to handle
the communication with the APIs. The next step is the
development of the client which only needs to access
the established GraphQL server to receive the data.
The view can display this data without further trans-
formation since it is being returned exactly as needed.

5.3 Critical Reflexion

5.3.1 Advantages

Using the code generation tool for the software devel-
opment process of an application provides the stan-
dard advantages related to MDSD. For example, soft-
ware quality is being increased since code generation
automatically leads to well structured and consistent
code. Other advantages that come along with MDSD
are the enhancement of development speed, a higher
level of reusability and the improved manageability of
complexity (Völter et al. (2013)).
Additionally, the development process showed that
using the tool allows quick access to APIs. As soon
as you specify the URL and other requested param-
eters (header-, URI- or query parameters) of an API
consumption you will receive the working code to ac-
cess the API. Using the tool allows putting the focus
on the important parts of the development process and
not the semantics of a programming language.
If we would develop the example web application as
an AngularJS app and not use our tool, it would re-
sult in a more complex client. To realize this exam-
ple project in AngularJS, we would have to imple-
ment the resolvers as Angular services and the API
requests with ngResource. We would have several
API requests for each service and also implement the
data transformation processes in the client. However,
if you use the architectural approach, we propose all
this code is outside of the client, and the frontend de-
veloper does not need to think about how to fetch data
but can concentrate on the user interface.

5.3.2 Limitations

Our approach requires an initial familiarisation with
the model and process. Therefore, using the tool just
once, for an application that does not need to con-
sume several services might not be the best scenario.
In such a case, manual coding could be quicker. Thus,
it would make sense to improve the usability of the
code generation tool to counteract this problem.
However, the main limitation of our approach is the

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

486



lack of round-trip engineering functionality. Once
the model is specified, and the code is generated, the
model and the code are not in synchronization any-
more. When, for example, one of the consumed APIs
changes (e.g., when a new API version was released)
the developer has two options: either adjust the code
manually or specify a completely new model. In the
latter case, though, code that was added manually
needs to be written all over again.
The meta-model we presented is not entirely generic.
It is limited to RESTful APIs and therefore, cannot be
applied with APIs using a different standard such as
SOAP.

6 CONCLUSION

In this paper, we presented a model-driven approach
for the consumption of RESTful APIs in SPA. We
introduced a reference architecture that reduces the
complexity of the SPA when using multiple differ-
ent APIs. We provided a meta-model describing the
consumption of RESTful APIs. Based on this meta-
model a code generation tool was developed to cre-
ate a Web service. We evaluated by utilizing the code
generation tool for the development of an example ap-
plication. The created Web service handles the access
to APIs and reduces the complexity of the SPA due to
the shift of responsibility away from the client.
Our model is already designed to be a generic model.
However, we limited the API consumption to REST.
As future work, we want to go up one level in abstrac-
tion and allow data exchange with other technologies.
Another part to focus on is the support of the round-
trip engineering functionality, which is currently the
main limitation of our tool. For example, the archi-
tecture presented by Gadea et al. could be a nice ex-
tension to our approach to counteract this problem.

REFERENCES

Bonifacio, R., Castro, T. M., Fernandes, R., Palmeira, A.,
and Kulesza, U. (2015). NeoIDL: A Domain-Specific
Language for Specifying REST Services. Seke, pages
613–618.

Chappell, D. (2004). Enterprise Service Bus. O’Reilly Se-
ries. O’Reilly Media, Incorporated.

Ed-Douibi, H., Izquierdo, J. L. C., Gómez, A., Tisi, M., and
Cabot, J. (2015). EMF-REST Generation of RESTful
APIs from Models. CoRR, abs/1504.0:39–43.

Facebook (2016). GraphQL Specification. https://facebook.
github.io/graphql/ [Accessed: 26/07/2017].

Gadea, C., Trifan, M., Ionescu, D., and Ionescu, B. (2016).
A Reference Architecture for Real-Time Microser-

vice API Consumption. In Proceedings of the 3rd
Workshop on CrossCloud Infrastructures & Platforms
- CrossCloud ’16, pages 1–6, New York, NY, USA.
ACM.

Haupt, F., Karastoyanova, D., Leymann, F., and Schroth, B.
(2014). A model-driven approach for REST compliant
services. In Proceedings - 2014 IEEE International
Conference on Web Services, ICWS 2014, pages 129–
136.

Hevner, A. R. (2007). A three cycle view of design sci-
ence research. Scandinavian journal of information
systems, 19(2):4.

Lano, K. (2009). Model-Driven Software Development With
UML and Java. Course Technology Press, Boston,
MA, United States.

Rossi, D. (2016). UML-based Model-Driven REST API
Development. In Proceedings of the 12th Interna-
tional Conference on Web Information Systems and
Technologies, Vol 1 (WEBIST), pages 194–201.

Völter, M., Stahl, T., Bettin, J., Haase, A., Helsen, S., Czar-
necki, K., and von Stockfleth, B. (2013). Model-
Driven Software Development: Technology, Engineer-
ing, Management. Wiley Software Patterns Series.
Wiley.

A Model-driven Approach for Generating RESTful Web Services in Single-Page Applications

487


