
Towards a Test Specification Language for Information Systems:

Focus on Data Entity and State Machine Tests

Alberto Rodrigues da Silva1, Ana C. R. Paiva2,3 and Valter Emanuel R. da Silva2
1INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

2Faculty of Engineering of the University of Porto, Porto, Portugal
3INESC TEC, Porto, Portugal

Keywords: Test Specification Language (TSL), Test Specification, Model-based Testing (MBT), Test Case Generation.

Abstract. This paper introduces the TSL language (short name for “Test Specification Language”) that intends to

improve the test specification of information systems in a systematic, rigorous and consistent way. TSL

specifications are produced from close requirement specifications expressed in the RSL language

(Requirements Specification Language). Both RSL and TSL support human-readable executable

specifications closer to natural language than models usually used in model-based testing approaches. TSL

includes several constructs logically arranged into views according to multiple testing engineering strategies,

commonly found in the information systems domain, such as: data entity tests and state machine tests, all of

them produced from equivalent requirement specification in RSL. A case study is also presented to illustrate

the proposed approach.

1 INTRODUCTION

Testing is one of the most important activities to

ensure the quality of a software system in the scope

of software development projects. As reported by Ibe,

about 30 to 60 percent of the total effort within a

project is spent on testing (Ibe, 2013). It is also

estimated that up to 50 percent of the total

development costs are related to testing (Fagan,

2001). This indicates, not only its importance, but

also the higher impact it has in the overall system

development process cycle.

Model-based testing (MBT) is one technique that

addresses this problem (Stahl and Volter, 2005; Silva,

2015; Morgado, 2017). A potential infinite set of test

cases can be generated from a model of a given

“system under test” (SUT) (or just “system” for

brevity). System models or system specifications vary

in nature: they can be more or less abstract and

represented textually (Paiva, 1997) and/or graphically

(Monteiro, 2013); they can describe the

functionalities or goals (Rodrigo, 2017) of the system

under test. A problem is that often these models do

not exist, which demand they have to be developed

from scratch, or there is only a textual description of

its requirements with a very informal way, which

does not allow to derivate automatically test cases

from it. However, the existence of system

requirements specification (SRS), defined with

controlled natural languages, may enable the

derivation of test cases directly from such rigorous

models or specifications.

Usually system tests and acceptance tests (like

requirement specifications) are manually written in

some natural language. However, the resultant test

cases are ineffective since they are hard to write and

costly to maintain. Leveraging domain specific

languages (DSLs) for functional testing can provide

several benefits. For example, Robin Buuren

recognizes in his work “Domain-Specific Language

Testing Framework” three major quality aspects

concerning the adoption of DSLs for test

specification, namely (Buuren, 2015): (i)

Effectiveness because it reduces the time of test

development, since tests can be generated from a

model; (ii) Usability because it is easier to produce

such test specification, considering the support

provided by the work environment; and (iii)

Correctness because it makes system tests clearer by

giving testers programmatic and strictly defined rules,

leading to fewer errors.

This research presents and discusses the TSL

(Test Specification Language) that adopts a model-

Silva, A., Paiva, A. and Silva, V.
Towards a Test Specification Language for Information Systems: Focus on Data Entity and State Machine Tests.
DOI: 10.5220/0006608002130224
In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), pages 213-224
ISBN: 978-989-758-283-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

213

based testing approach for rigorous and human-

readable specification of test cases. TSL is strongly

inspired on the grammar, nomenclature and writing

style as defined by the RSL, which is a rigorous

requirements specification language (Silva, 2017;

Silva, 2017a). By applying black-box functional

testing design techniques, TSL includes and supports

two different test strategies, namely, (i) domain

analysis testing (the test strategy uses techniques such

as equivalence partitioning and boundary value

analysis for the definition of structural data values);

(ii) state machine testing (the test strategy traverses

the State Machine expressed in RSL according to

different coverage criteria, e.g., cover all states).

To better support the explanation and discussion

of the TSL language we introduce a fictitious

information system (the “BillingSystem”) that is

partially described as a variety of informal

requirements such as the following text. This

description is to some extent deliberately incomplete,

vague and inconsistent, as it is common in real-world

situations.

Informal Requirements of a Billing System

BillingSystem is a system that allows users to manage

customers, products and invoices. A user of the

system is someone that has a user account and is

assigned to one or more user roles, such as user,

user-operator, user-manager and user-administrator

[…].

User-operator is responsible for managing

customers and invoices. System shall allow user-

operator to create/update information related to

customers and invoices […].

The creation of invoices is a shared task

performed by the user-operator and the user-

manager. System shall allow user-operator to create

new invoices (with respective invoice details). Before

sending an invoice to a customer, the invoice shall be

formally approved by the user-manager. Only after

such approval, the user-operator shall issue and send

that invoice electronically by e-mail and by regular

post. In addition, for each invoice, the user-operator

needs to keep track if it is paid or not […].

User-manager shall be responsible for approving

invoices before they are issued and sent to their

customers. User-manager shall allow monitoring the

process of creating, approving and payments

invoices. User-manager shall approve or reject

invoices […].

This paper is organized in 5 sections. Section 2

introduces and overviews the RSL language, by

introducing its bi-dimensional multi-view

architecture, based on abstraction levels and

concerns. Section 3 gives a very short introduction to

the concepts around Cucumber and Gherkin. Section

4 presents and discusses the TSL constructs and

views, namely tests based on data entities and state

machines. Finally, Section 5 presents the conclusion

and identifies issues for future work.

2 RSL OVERVIEW

RSLingo is a long-term research initiative in the RE

(Requirements Engineering) area that recognizes that

natural language, although being the most common

and preferred form of representation used within

requirements documents, it is prone to produce such

ambiguous and inconsistent documents that are hard

to automatically validate or transform. Originally

RSLingo proposed an approach to use simplified

natural language processing techniques as well as

human-driven techniques for capturing relevant

information from ad-hoc natural language

requirements specifications and then applying

lightweight parsing techniques to extract domain

knowledge encoded within them (Ferreira and Silva,

2012). This was achieved through the use of two

original languages: the RSL-PL (Pattern Language)

(Ferreira and Silva, 2013), designed for encoding RE-

specific linguistic patterns, and RSL-IL (Intermediate

Language), a domain specific language designed to

address RE concerns (Ferreira and Silva, 2013a).

Through the use of these two languages and the

mapping between them, the initial knowledge written

in natural language can be extracted, parsed and

converted to a more structured format, reducing its

original ambiguity and creating a more rigorous SRS

document (Silva, 2015a).

More recently, Silva et al. designed a broader and

more consistent language, called “RSLingo's RSL”

(or just “RSL” for the sake of brevity), based on the

design of former languages (Videira and Silva, 2005;

Videira et al, 2006; Silva et al, 2007; Ferreira and

Silva, 2013; Ferreira and Silva, 2013a; Ribeiro and

Silva, 2014; Ribeiro and Silva, 2014/a; Silva et al,

2015; Savic et al, 2015). According to its authors RSL

is a control natural language to help the production of

SRSs in a systematic, rigorous and consistent way

(Silva, 2017; Silva, 2017a). RSL is a process- and

tool-independent language, i.e., it can be used and

adapted by different users and organizations with

different processes/ methodologies and supported by

multiple types of software tools.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

214

RSL provides several constructs that are logically

arranged into views according to two viewpoints: the

abstraction level (Levels) and the specific RE

concerns (Concerns) they address. As summarized in

Table 1, these views are organized according to two

abstraction levels: business and system levels; and to

five concerns: context, active structure, behaviour,

passive structure and requirements.

At the business level, RSL supports the

specification of the following business-related

concerns: (1) the people and organizations that can

influence or will be affected by the system; (2)

business processes, events, and flows that might help

to describe the business behaviour; (3) the common

terms used in that business domain; and (4) the

general business goals of stakeholders regarding the

value that the business as well the system will bring.

Considering these concerns, RSL business level

comprise respectively the following views:

Stakeholders (active structure concern),

BusinessProcesses (behaviour concern), Glossary

(passive structure concern), and BusinessGoals

(requirements concern). In addition, the references to

the systems used by the business, as well as their

relationships can also be defined at this level (context

concern).

On the other hand, at the system level, RSL

supports the specification of multiple RE specific

concerns, namely by the adoption of the following:

(1) constructs that allow to describe the actors that

interact with the system; (2) constructs that allow to

describe the behaviour of some system’s data entities,

namely based on state machines; (3) constructs that

allow to describe the structure of the system, namely

Table 1: Classification of RSL views: abstraction levels versus RE specific concerns (Silva, 2017).

Specification 1: RSL (partial) specification example.

Concerns

Context Active Structure Behavior Passive Structure Requirements

Levels (Subjects) (Verbs, Actions) (Objects)

Business package-

business

Business

SystemRelation

BusinessElemen

t Relation

Stakeholder BusinessProcess

(BusinessEvent,

BusinessFlows)

GlossaryTerm BusinessGoal

System package-

system

System

Requirement

Relation

Actor StateMachine

(State, Transition,

Action)

DataEntity

DataEntityView

SystemGoal

QR

Constraint

FR

UseCase

UserStory

Package

Towards a Test Specification Language for Information Systems: Focus on Data Entity and State Machine Tests

215

based on data entities and data entity views; and (4)

constructs that allow to specify the requirements of

the system according different styles. Considering

these concerns, the system level respectively

comprises the following views: Actors (active

structure concern); StateMachines (behaviour

concern); DataEntities and DataEntityViews (passive

structure concern); and multiple types of

Requirements such as SystemGoals,

QualityRequirements (QRs), Constraints,

FunctionalRequirements (FRs), UseCases, and

UserStories (requirements concern). In addition, all

these elements and views should be defined in the

context of a defined System (context concern).

Specification 1 shows a simple text snippet of the

RSL requirements specification for the BillingSystem

example.

3 GHERKIN/CUCUMBER

OVERVIEW

Behavior-driven Development (BDD) is a software

development methodology in which an application is

specified and designed describing how its beha-vior

should appear to an external observer (Solis and

Wang, 2011). In BDD, people like business analysts

or product owners first write acceptance tests that

describe the system behavior from the user's point of

view. Then these acceptance tests shall be reviewed

and approved by product owners before developers

start write their software code.

Cucumber1 is a test tool that executes automated

acceptance tests written in a behaviour-driven style

(BDD). Cucumber enables automation of functional

validation in an easily readable and understandable

format (as plain English) for business analysts,

developers, testers, and others.

Gherkin2 is a popular language used by Cucumber

to define test cases. Its main objective is to enable to

specify tests in a way that clients can understand

them. Gherkin tests are organized into features. Each

feature is made up of a collection of scenarios defined

by a sequence of steps and following a Given-When-

Then (GWT) rule. A simple example is illustrated

below, more information can be obtained, for

example, in 1.

Simple test case example in Gherkin:

Feature: Login Action

Scenario: Successful Login with

1 https://cucumber.io/

 Valid Credentials

Given User is on Home Page

When User Navigate to LogIn Page

 And User enters UserName

 And Password

Then Message displayed Login Successfully

4 TSL APPROACH AND

LANGUAGE

The aim of this research is to develop an approach to

support the specification and generation (whenever

relevant) of software tests defined in TSL, directly

from requirements specifications originally defined

in RSL. It is intended to achieve the following goals:

(i) extend the RSLingo approach with the support for

testing activities; (ii) define a set of strategies that

would allow generating test cases from the RSL

constructs; and (iii) automate the test case generation

process.

Figure 1 suggests the proposed approach. First,

RSL requirements specifications are the input for the

RSL-to-TSL transformation that generates TSL

specifications. Second, based on predefined

strategies, these TSL specs can be expanded and

generated into other TSL specs (e.g., for increasing

the system testing domain with more test cases).

Third, the TSL specs are the input for the TSL-to-

Gherkin transformation that generates Gherkin

specifications, and ultimately these specs can be used

for documentation purposes or even for testing

execution.

As illustrated in Figure 2, a TSL specification is a

combination of two different types of elements. First,

the TestSupportSpecs package includes

TestSupportSpec elements such as DataEntities or

StateMac hines. These elements are a simplified

version of the equivalent elements supported by the

RSL language (e.g., the TSL DataEntity element is a

simplified version of the RSL DataEntity). These

TSL TestSupportSpec elements can be authored

manually but usually shall be generated from the RSL

specs.

Second, the TestSuite package includes TestCase

elements such as DataEntityTestCase or

StateMachineTestCase. Each TestCase shall be

defined as Valid or Invalid and shall have a

dependency to a respective TestSupportSpec, e.g., a

StateMachineTestCase shall have a dependency to

the respective StateMachine. These TestCase

2 https://cucumber.io/docs/reference#gherkin

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

216

elements can be generated by the RSL-to-TSL and

TSL-to-TSL transformations, but usually shall be

authored and refined by the software testers.

TSL allows specifying various black-box test cases in

a syntactic manner similar to that expressed by RSL.

In addition, TSL allows to systematize the test

developing process with both Xtext-based and Excel

RSL formats. Xtext based format is handled with the

integration of the Eclipse IDE (Bettini, 2016). This

environment provides an editor for test construction,

covering most important features concerning IDE,

granting TSL a semi-automated way to formally

specify test cases. This Eclipse-based tool provides

great assist for composing tests, namely comprehends

a syntax-aware editor with features like immediate

feedback, incremental syntax checking, suggested

corrections, and auto-completion. On the other hand,

the RSL/TSL Excel template is extended with the

creation of three Excel sheets, arranged in a tabular

way, for each of the provided test types. This grants a

broader usage, since testers with no IT background

can specify tests using a general tool as MS-Excel. On

the other hand, it loses part of the rigor and formality

inherent to the Xtext format.

As suggested above in Figure 2, TSL supports the

specification of different test generation techniques

from RSL specifications, namely DataEntity,

StateMachine and UseCase test cases.

DataEntityTestCases can be defined by applying

equivalence class partitioning and boundary value

analysis (Bhat and Quadri, 2015) over RSL

DataEntities. On the other hand,

StateMachineTestCases can be defined by applying

different algorithms to traverse the state machine

defined in RSL, so that it shall be possible to build

different test cases that correspond to different paths

through the state machine. Furthermore,

UseCaseTestCase can be defined by exploring

multiple sequences of steps defined in RSL use cases,

and also by associating data values to the involved

data entities. Due to space constraints we do not show

in this paper the part of the TSL language related to

Figure 1: TSL based approach.

Figure 2: Metamodel of the TSL general architecture (partial view).

RSL

spec

TSL

spec

TSL-to-TSL

RSL-to-TSL

Gherkin

spec

TSL-to-Gherkin

TestCase

DataEntityTestCase UseCaseTestCase StateMachineTestCase

DataEntity StateMachineUseCase

TestSuite

TestSupportSpecTestSupportSpecs

import

Towards a Test Specification Language for Information Systems: Focus on Data Entity and State Machine Tests

217

Specification 2: Example of a TSL (partial) specification defined in a TestSupportSpecs package.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

218

UseCaseTestCases (that shall be discussed in a future

work).

4.1 Test Support Specs

As referred above, a TestSupportSpecs package

defines the supported elements that shall be then used

by the test cases. Specification 2 shows a TSL partial

specification of a TestSupportSpecs package for the

BillingSystem example. In particular it shows the

specification of the following elements: e_VAT and

e_Product data entities, actors, the

uc_1_ManageInvoices use case, and the

sm_e_Invoice state machine.

4.2 Data Entity Test Cases

Domain analysis testing is based on classic test design

techniques known as “equivalence class partitioning”

and “boundary value analysis” (Bhat and Quadri,

2015). Since most of the times it is unfeasible to test

all possible values of the possible domain classes or

data entities (in the RSL/TSL terminology), the

equivalence class partitioning technique partitions the

domain into equivalent classes (assuming that the

behaviour of the system is the same for every value

of a class) and then tests one value for each class. For

boundary value analysis, the input values are the ones

located at the boundaries of the equivalence classes

because it is expected that the probability of finding

failures is higher.

As shown in Specification 2, a DataEntity keeps

information about a specific data entity and its

attributes; for each attribute it keeps information

about its type, size, among others. Based on this

information, it is possible to define equivalence

classes and test input data. For example, consider an

entity with an attribute A of type real and with one

decimal place. According to equivalence class

partitioning we should test valid and invalid input

values. So, for this particular case, the tester could

define a valid input, e.g., 15.2, and an invalid input,

e.g., 14.35. Of course, the tester can opt to define an

invalid input value according to the type of the

attribute. In this case a possible invalid value would

be, for example, a string, e.g., “invValue”.

The benefit of the TSL is that it builds a view with

all the entities and attributes for which the tester

should define test input data. In case of sequential

attribute values (such has numbers), it is also possible

to apply boundary value analysis to define test input

data. For instance, if we have an attribute B that

ranges from 5 to 7, the tester can define test input data

on the boundaries, e.g., 5 and 7 for valid, and 4 and 8

for invalid values.

As illustrated in Figure 3, a DataEntityTestCase

refers to just one DataEntity and defines a

combination of values that are associated to its

respective attributes. These values can be defined

individually at an attribute basis (using the

TestAttribute object) or as a table of values associated

to multiple attributes (using the Values object). Each

DataEntityTestCase shall be defined as Valid or

Invalid type depending on the validity of such values.

In the Billing System context, an invoice is a

commercial document related to a sale transaction

between a seller to a buyer (customer). For each

invoice the system shall indicate the products,

quantities, agreed prices for products or services the

seller had provided the buyer. Each product has a

price with and without the respective VAT. The VAT

(value-added tax) VAT is a type of general

consumption tax that is collected incrementally,

based on the surplus value, added to the price on the

work or the product at each stage of production.

Specification 3 shows a TSL specification of some of

these entities, namely the e_VAT and e_Product data

entities.

Based on this data entities specification it is

possible to define and also to generate some data

entity test cases. Specification 4 shows some of these

tests defined for the e_VAT data entity. First, detVAT1

is defined as a valid test case and defines two

testAttributes, which both define a partition class

check, valid values, and for the e_VAT.VATCode

attribute a uniqueness constraint. Second, detVAT2 is

defined as a valid test case but shows a set of relevant

attributes with valid values in a table format; this

representation is usually the most practical and

convenient approach to define such values. In

addition, detVAT2 also defines three testAttributes.

Third, detVAT3 is defined as an invalid test case and

involves the definition of two testAttributes, both

with problems referred by their respective messages

(i.e., "Incorrect VAT values" and "Incorrect

VATValue PartitionClass").

Specification 5 shows the equivalent data entity

test case in the Gherkin language.

Towards a Test Specification Language for Information Systems: Focus on Data Entity and State Machine Tests

219

Figure 3: Metamodel of the TSL DataEntityTestCase definition (partial view).

Specification 3: Example of a TSL (partial) specification of data entities.

Specification 4: Example of a TSL (partial) specification of data entity tests.

TestCase

DataEntityTestCase
«enumerati...

TestCaseType

TestSupportSpec

DataEntity

AttributeDataEntityValues TestAttribute

AttributeType
AttributeValue AttributeRef

*

0..1

withValues

dataEntity

1

1..*

1

*

testAttributes

type

partitionClass

0..1

1

type

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

220

Specification 5: Example of a Gherkin (partial) specification of data entity tests.

4.3 State Machine Test Cases

A state machine is a model that describes the dynamic

behaviour of a system over a given data entity (or

object) throughout its life-cycle. A state machine

allows to represent the behaviour of a data entity as a

set of event-driven actions from a state to another

when triggered by a given use case action. In addition,

from the state machine defined in RSL, it is possible

to apply different algorithms that traverse the state

machine according to different test coverage criteria,

such as, all states or all transitions.

As illustrated in Figure 4, a

StateMachineTestCase specifies the State Machine to

which is applied and an ordered sequence of states to

traverse (i.e., a StateSequence). Finally, this

StateMachine TestCase shall be defined as Valid or

Invalid type depending if that sequence of states are

semantically valid or not.

The Specification 6 shows some examples of

StateMachineTestCase associated to the e_Invoice’s

state machine (as previously defined above, shown in

Specification 2). The first (i.e., tsm1_SM_E_Invoice)

is an invalid test case because it defines an invalid

sequence of states (i.e., Initial, Pending, Paid); The

second (i.e., tsm2_SM_E_Invoice) is a valid test case

because it defines a valid sequence of states related

with a reject situation (i.e., Initial, Pending, Rejected,

Deleted, Archive); the third (i.e.,

tsm3_SM_E_Invoice) is also a valid test case because

it defines a valid sequence of states related with an

approved and paid situation.

Specification 7 shows the equivalent state

machine test case in the Gherkin language.

5 CONCLUSION

This paper describes the Test Specification Language

(TSL), a model-based test approach to specify test

cases, through the perspective of system tests, from a

RSL software model. Functional test cases are

mapped from the various RSL package-system views,

containing several constructs that describe the system

behaviour, such as Actor view, DataEntity view,

UseCase view and StateMachine view. This lead to

the creation of three main test constructs by applying

of black-box test design techniques. More

specifically: data entity tests, state machine tests and

use case tests.

The study case “Billing System”, a fictitious

invoice management application, allowed to illus-

Towards a Test Specification Language for Information Systems: Focus on Data Entity and State Machine Tests

221

Figure 4: Metamodel of the TSL StateMachineTestCase definition (partial view).

Specification 6: Example of a TSL (partial) specification of state machine tests.

Specification 7: Example of a Gherkin (partial) specification of state machine tests.

trate how the several test case constructs can be

represented in a concrete and practical scenario.

Demonstrating that, as executable requirements

specifications, functional tests can be easy to "read,

write, execute, debug, validate, and maintain" (King,

2014).

As future work it shall be important to extend the

language to support, in addition, both use case and

TestCase

StateMachineTestCase

«enumerati...

TestCaseType

 Valid

 Invalid

StateSequence

TestSupportSpec

StateMachine

State

1

stateSequence

1..*

{ordered}

type +stateMachine

1

*

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

222

user story test cases. It shall also be relevant to

automate processes for TSL test case generation and

we consider the following transformations: generate

TSL test cases from equivalent RSL requirements

specifications; and directly from existant systems and

databases, namely adopting model-driven reverse

engineering techniques like we researched recently

(Reis and Silva, 2017). Futhermore, it shall be

important the automatic execution of tests namely

with their integration with external test frameworks.

At this point in time, the developed TSL State

Machine Support Tool generates test cases based on

a Switch-0 coverage, it would also be interesting to

implement algorithms based on other coverage

criteria (e.g., Switch-1 or Switch-2). Aside from that,

one could explore the possibility of more automated

processes, for instance: the generation of domain

analysis test data by combinatorial generation of

values for each attribute (e.g., constrains on possible

attribute values) and extraction of test scenarios based

on the varies flows expressed by Use Cases.

The generated tests specified in TSL can be

executed manually by a tester to exercise the SUT and

discover possible errors in the system. It would be

interesting for further research to explore the

integration of TSL files, of real developed systems,

with test frameworks to provide automatic execution

of those tests. For example, exploration of tools such

Cucumber3 or Specflow4 which enables the automatic

execution of tests in a plain-text language called

Gherkin. Cucumber is a popular tool employed in

various languages including Java, JavaScript, and

Python. Meanwhile, Specflow is an open source

solution for .NET projects. This way it would be

possible to provide an oracle for the tests, determining

whether they passed or failed.

ACKNOWLEDGEMENTS

This work was partially supported by national funds

under FCT projects UID/CEC/50021/2013.

REFERENCES

Bettini, L., 2016. Implementing Domain-Specific

Languages with Xtext and Xtend. Packt Publishing Ltd.

Buuren, Robin A. ten. Domain-Specific Language Testing

Framework. (October), 2015.

Fagan, Michael E., 2001. Advances in software inspections.

In Pioneers and Their Contributions to Software

3 https://cucumber.io/

Engineering: sd&m Conference on Software Pioneers,

Springer.

Ferreira, D., Silva, A. R., 2012. RSLingo: An information

extraction approach toward formal requirements

specifications, Proceedings of MoDRE’2012, IEEE CS.

Ferreira, D., Silva, A. R., 2013. RSL-PL: A Linguistic

Pattern Language for Documenting Software

Requirements, in Proceedings of RePa’13, IEEE CS.

Ferreira, D., Silva, A. R., 2013a. RSL-IL: An Interlingua

for Formally Documenting Requirements, in Proc. of

the of Third IEEE International Workshop on Model

Driven Requirements Engineering, IEEE CS.

Ibe, Marcel, 2013. Decomposition of test cases in model-

based testing, in CEUR Workshop Proceedings.

King, Tariq, 2014. Functional Testing with Domain-

Specific Languages.

Kovitz, B. 1998. Practical Software Requirements: Manual

of Content and Style. Manning.

Monteiro, T., Paiva, A.C.R., 2013. Pattern Based GUI

Testing Modeling Environment, Sixth International

Conference on Software Testing, Verification and

Validation (ICST) Workshops Proceedings.

Morgado, I., Paiva, A.C.R., 2017. Mobile GUI testing,

Software Quality Journal, pp.1-18.

Paiva, A.C.R. (1997). Automated Specification-based

Testing of Graphical User Interfaces, Ph.D. thesis,

Faculty of Engineering, Porto University, Porto,

Portugal.

Reis, A., Silva, A. R., 2017. XIS-Reverse: A Model-Driven

Reverse Engineering Approach for Legacy Information

Systems, Proceedings of MODELSWARD’2017,

SCITEPRESS.

Ribeiro, A., Silva, A. R., 2014. XIS-Mobile: A DSL for

Mobile Applications, Proceedings of the 29th Annual

ACM Symposium on Applied Computing (SAC).

Ribeiro, A., Silva, A. R., 2014a. Evaluation of XIS-Mobile,

a Domain Specific Language for Mobile Application

Development, Journal of Software Engineering and

Applications, 7(11), pp. 906-919.

Rodrigo M. L. M. Moreira, Ana C. R. Paiva, Miguel

Nabuco, and Atif Memon, 2017. Pattern-based GUI

testing: bridging the gap between design and quality

assurance. Software Testing, Verification and

Reliability Journal, 27(3):e1629–n/a.

Savic, D., et al, 2015. SilabMDD: A Use Case Model

Driven Approach, ICIST 2015 5th International

Conference on Information Society and Technology.

Silva, A. R., 2015. Model-Driven Engineering: A Survey

Supported by a Unified Conceptual Model, Computer

Languages, Systems & Structures 43 (C), 139–155.

Silva, A. R., 2015a. SpecQua: Towards a Framework for

Requirements Specifications with Increased Quality, in

Lecture Notes in Business Information Processing

(LNBIP), LNBIP 227, Springer.

Silva, A. R., et al, 2015. A Pattern Language for Use Cases

Specification, in Proceedings of EuroPLOP’2015,

ACM.

4 http://specflow.org/

Towards a Test Specification Language for Information Systems: Focus on Data Entity and State Machine Tests

223

Silva, A. R., Saraiva, J., Ferreira, D., Silva, R., Videira, C.

2007. Integration of RE and MDE Paradigms: The

ProjectIT Approach and Tools, IET Software, IET.

Silva, A. R., Saraiva, J., Silva, R., Martins, C., 2007. XIS –

UML Profile for eXtreme Modeling Interactive

Systems, in Proceedings of MOMPES'2007, IEEE

Computer Society.

Silva, A. R., Verelst, J., Mannaert, H., Ferreira, D.,

Huysmans, P., 2014. Towards a System Requirements

Specification Template that Minimizes Combinatorial

Effects, Proceedings of QUATIC’2014 Conference,

IEEE CS.

Silva, A. R., 2017. Linguistic Patterns and Linguistic Styles

for Requirements Specification (I): An Application

Case with the Rigorous RSL/Business-Level Language,

in Proceedings of EuroPLOP’2017, ACM.

Silva, A. R., 2017a. A Rigorous Requirement Specification

Language for Information Systems: Focus on RSL’s

Use Cases, Data Entities and State Machines, INESC-

ID Technical Report.

Solis, C., & Wang, X., 2011. A study of the characteristics

of behaviour driven development. In Software

Engineering and Advanced Applications (SEAA), 37th

EUROMICRO Conference on (pp. 383-387). IEEE.

Stahl, T., Volter, M., 2005. Model-Driven Software

Development, Wiley.

Verelst, J., Silva, A.R., Mannaert, H., Ferreira, D.,

Huysmans, 2013. Identifying Combinatorial Effects in

Requirements Engineering. In Proceedings of Third

Enterprise Engineering Working Conference (EEWC

2013), Advances in Enterprise Engineering, LNBIP,

Springer.

Videira, C., Silva, A. R., 2005. Patterns and metamodel for

a natural-language-based requirements specification

language. CAiSE Short Paper Proceedings.

Videira, C., Ferreira, D., Silva, A. R., 2006. A linguistic

patterns approach for requirements specification.

Proceedings 32nd Euromicro Conference on

Software Engineering and Advanced Applications

(Euromicro'2006), IEEE Computer Society.

Bhat, A., Quadri, S. M. K., 2015. Equivalence class

partitioning and boundary value analysis - A review.

2nd International Conference on Computing for

Sustainable Global Development (INDIACom).

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

224

