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Abstract: Using cloud computing to execute software processes brings several benefits to software development. In
a previous work, we proposed a reference architecture, which treats software processes as workflows and
uses cloud computing to execute them. Scheduling the execution in the cloud impacts the execution cost and
the cloud resources utilization. Existing workflow scheduling algorithms target business and scientific (data-
driven) workflows, but not software processes workflows. In this paper, we adapt three scheduling algorithms
for our architecture and propose a fourth one; the Proportional Adaptive Task Schedule algorithm. We evaluate
the algorithms in terms of their execution cost, makespan and cloud resource utilization. Our results show that
our proposed algorithm saves between 19.74% and 45.78% of the execution cost and provides the best resource
(virtual machine) utilization compared to the adapted algorithms while providing the second best makespan.

1 INTRODUCTION

Cloud computing has become the delivery platform
for the Post-PC era applications (Alajrami et al.,
2016b). In a previous work (Alajrami et al., 2016b),
we argued that software development processes can
also benefit from the cloud virtues and be delivered as
a service.

Paulk et al. (Paulk et al., 1993) describe a software
process as “a set of activities, methods, practices,
and transformations that people use to develop and
maintain software and the associated products (e.g.,
project plans, design documents, code, test cases,
and user manuals)”. Software processes are pro-
cesses too (Fuggetta, 2000) and the use of process-
related technologies (e.g., workflow systems) for soft-
ware processes has been overlooked (Fuggetta and
Di Nitto, 2014).

We proposed a reference architecture for Soft-
ware Development as a Service (SDaaS) (Alajrami
et al., 2016b) where software development processes
are modeled then executed in the cloud. The architec-
ture is depicted in Figure 1 and we briefly describe it
in Section 2.

Software vs Business Processes
Software processes differ from business and scien-

tific (data-driven) processes. A business process au-
tomates a business procedure which has been well-
defined in a given context. Defining such a pro-

cess is often mainly concerned with the business side
of things. For example, the process of admitting
new students into a university is a business process
which can be modelled and executed in a BPM sys-
tem. On the other hand, building a software that
can execute the student admission procedure requires
considering more aspects than just the business side.
Those aspects include: security, performance, soft-
ware/hardware resources, legislation and compliance
etc. As a result, the software development process
of such system would go through different stages and
will include business, technical and legal stakehold-
ers. The process itself will have several sub-processes
for the specifications, design, implementation, quality
assurance, testing, releasing and operating the soft-
ware. All these (sub)processes are subject to frequent
change during the project (e.g., when the business re-
quirements change). In short, software process are
more dynamic and interactive compared to business
processes.

Software vs Scientific Processes
The execution and scheduling of scientific pro-

cesses have been addressed in other works. However,
as we explained earlier, software processes are more
dynamic and interactive. A scientific process is of-
ten data-driven (sequential/parallel processing of data
to obtain some results) which makes scheduling its
execution fundamentally different from scheduling a
software process.
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Figure 1: The SDaaS reference architecture. Taken from (Alajrami et al., 2016b).

Several approaches to software process modeling
have been introduced over time. The state-of-the-art
approach is the UML-based approach which utilizes
the wide adoption and acceptance of the Unified Mod-
eling Language (UML) for modeling software pro-
cesses. The most notable UML-based language is
the OMG SPEM 2.0 (OMG, 2008) which contains
the necessary elements to model software processes.
However, as we explained in (Alajrami et al., 2016a),
SPEM 2.0 lacks explicit support for process execution
in general and for cloud-based execution in particu-
lar. Thus, we proposed EXE-SPEM (Alajrami et al.,
2016a); an extension of SPEM 2.0, which can model
cloud-based executable software processes. EXE-
SPEM models describe a partially ordered set of soft-
ware development activities and their required com-
putational and tool support (e.g., some activities may
require execution on private infrastructure for secu-
rity reasons). These activities can either be: concrete
activities (the tool support that is used for process ex-
ecution) or control activities (enables guiding the ex-
ecution of the process in one of multiple predefined
directions).

Executing software processes in the cloud har-
nesses the cloud economies of scale. However, de-
spite the illusion that the cloud offers an unlim-
ited pool of computational resources, these resources
come at a cost. While computational resources might
be plenty, monetary resources are always limited.
Therefore, software processes execution scheduling
should consider reducing the cost while not caus-
ing significant execution delays. Workflow schedul-
ing in the cloud has been investigated (e.g., (Vijin-

dra and Shenai, 2012; Singh and Singh, 2013; Bala
and Chana, 2011)) where several algorithms have
been proposed with different objectives (cost reduc-
tion, meeting deadlines, makespan optimization, etc.).
However, these algorithms have always focused on
scientific or business process workflows and none
have addressed execution of software processes
workflows. Some algorithms use static scheduling
mechanism, which does not handle the dynamicity
and heterogeneity of cloud resources. In addition, few
algorithms considered the diverse requirements that
different workflows activities may require in terms of
cloud resource types. To the best of our knowledge,
no existing research has addressed scheduling soft-
ware processes workflows in the cloud and the cater-
ing for the special needs of such workflows.

In a setting where multiple software development
processes (and their activities) compete for shared
computational resources (workflow engines which
execute the process), scheduling software processes
(workflows) execution becomes important. Workflow
scheduling is an NP-hard problem (Wang et al., 2014;
Yu and Buyya, 2005) which refers to the allocation
of sufficient resources (human or computational) to
workflow activities. The schedule impacts the work-
flow makespan (execution time) and cost as well as
the computational resources utilization.

In this paper, we focus on the Scheduler compo-
nent from the SDaaS architecture. To reduce the soft-
ware processes execution cost in the cloud, we adapt
three algorithms (which were not designed to sched-
ule software processes execution) for scheduling soft-
ware processes execution in the cloud. In addition, we
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propose a fourth algorithm; the Proportional Adap-
tive Task Schedule. We evaluate these algorithms
through simulation and we benchmark their perfor-
mance in terms of execution cost and makespan. The
simulation results show that our proposed algorithm
saves between 19.74% and 45.78% of the execution
cost and provides the best resource (virtual machine)
utilization compared to the adapted algorithms while
providing the second best makespan.

The rest of the paper is structured as follows:
the next section provides background on workflow
scheduling algorithms. Section 4 describes the
adapted and proposed scheduling algorithms for soft-
ware processes execution in the cloud. Section 5
demonstrates the evaluation of the adapted and pro-
posed algorithms. Finally, section 6 provides con-
cluding remarks.

2 SDAAS OVERVIEW

As shown in Figure 1, the SDaaS architecture consists
of: design-time components for modeling and manip-
ulating software processes, and run-time components
for executing software process models and manage
their artifacts.

Software processes are modeled at design-time us-
ing the EXE-SPEM (Alajrami et al., 2016a) modeling
language. Then, these models are executed at run-
time. The modelling components are extensively ex-
plained in (Alajrami et al., 2016b).

The Scheduler is responsible for allocating the ex-
ecution of the software process activities to workflow
engines which match the modeled (computational and
privacy) requirements for each activity. The Workflow
Engines Registry keeps track of the available work-
flow engines and their specifications and workloads.
The Execution Manager triggers the execution and
monitors it at run-time. During the execution of ac-
tivities, External Tools can be used and generated ar-
tifacts are managed and stored by the Artifacts Man-
ager. External Workflow Collaboration enables soft-
ware processes to interoperate with other workflow
systems. Further, when part of the process is out-
sourced to partner(s), the SLA Monitor ensures that
all parties are not breaching the SLA. Finally, the
Consistency & Compliance Checker performs consis-
tency checking for the process (during its execution)
towards a standard process. This can alleviate devel-
opment problems (e.g., deviating from a standard pro-
cess) early and save time and cost. The SDaaS ar-
chitecture treats and executes software processes as
workflows. The execution takes place in a set of dis-
tributed workflow engines (execution containers for

executing workflow activities) deployed in a public,
private or hybrid cloud (mixture of public and private
cloud).

3 WORKFLOW SCHEDULING
ALGORITHMS

While several authors have surveyed workflow
scheduling algorithms (e.g., (Vijindra and Shenai,
2012; Singh and Singh, 2013; Bala and Chana,
2011)), in this section, for brevity, we review only
three workflow scheduling algorithms and their suit-
ability for scheduling software processes execution
in the cloud. These algorithms were selected as
they target optimizing workflow execution cost and/or
makespan in the cloud.

A Compromised-Time-Cost Scheduling Algo-
rithm in SwinDeW-C for Instance-Intensive Cost-
Constrained Workflows on a Cloud Computing
Platform

Overview
Liu et al. (Liu et al., 2010) proposed an algorithm for
scheduling workflows with large number of instances
(instance-intensive) and cost constraints on the cloud.
It aims to minimize the cost under user designated
deadlines or minimizing execution time under user
designated budget. The algorithm dynamically cal-
culates the relation between cost and execution time
and visualizes it to the user so that he/she can make
a choice to compromise time or cost. The algorithm
is compared against the Deadline-MDP algorithm (Yu
et al., 2005) in terms of cost and makespan and shows
that it reduces execution cost by over 15% whilst
meeting the user-designated deadline and reduces the
mean execution time by over 20% within the user-
designated execution cost.

Limitations
However, it is worth noting that the cost calculation
in this algorithm does not consider the execution time
taken by a task and instead uses a hard-coded ta-
ble for execution prices based on the provided pro-
cessing speed. In addition, this algorithm does not
support tasks to have special resource requirements
such as private resources or specific computational
power which is needed in software processes as we
explained in Section 1. Additionally, the idea of ap-
plying deadlines to software processes workflows is
not practical due to the fact that it is hard to predict/-
control the execution time of many activities in such
processes. Especially, the ones which rely on human
intervention.

Auto-Scaling to Minimize Cost and Meet Ap-
plication Deadlines in Cloud Workflows

Cost-aware Scheduling of Software Processes Execution in the Cloud
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Overview
Mao et al. (Mao and Humphrey, 2011) proposed an al-
gorithm for scheduling workflow tasks within a given
deadline and at the minimal cost by dynamically al-
locating/deallocating virtual machines (VMs). The
schedule is dynamically calculated to auto-scale VMs
to handle dynamic loads from multiple workflows.

Limitations
While this approach would fit for data-intensive or
business process workflows, as mentioned earlier, al-
locating deadlines for software processes is not prac-
tical. Software processes have a mixture of human-
performed and tool-supported tasks. The human-
performed tasks are often unpredictable and can be
long-running, therefore, it would be challenging to al-
locate sub-deadlines for this type of tasks.

Adaptive Task Schedule
Overview

In (Wang et al., 2014), Wang et al. proposed a dy-
namic adaptive task schedule algorithm which dy-
namically sets a maximum number of VMs that can
be acquired at any given time. This limit is calcu-
lated based on two variables: either historical (back-
ward) or future (forward) number of activities and an
arbitrary threshold. They compare this algorithm with
three other algorithms (one static and two dynamic)
and their results show that the adaptive task schedule
algorithm based on future number of tasks gives the
best performance.

Limitations
This algorithm, however, does not handle specific
requirements of each workflow activity (which is
needed for software processes as we discussed ear-
lier) and relies on an arbitrary value which does not
have any rules to calculate.

We adapt this algorithm (in Section 4.2) to the
SDaaS architecture needs and we show that our pro-
posed algorithm (in Section 4.3) outperforms this one.

4 COST-AWARE SCHEDULING
ALGORITHMS

Unlike scientific workflows, software processes are
control-flow workflows which involve more human
interactions. Furthermore, different types of soft-
ware processes tasks can require different types of re-
sources in terms of computational power and/or de-
ployment choices (public vs private clouds). These
requirements include the choice of public or private
cloud, cloud provider (in case of using public clouds),
the virtual machine image, machine type (specify-
ing the amount of memory, CPU power and network

bandwidth) and number of machines (in case of a dis-
tributed activity).

Below, we list the assumptions we use to design
the scheduling process:

• The SDaaS architecture will be used by an or-
ganization which have multiple (geographically-
distributed) teams which collaborate on several
projects concurrently.

• Software processes contain a set of activities with
different requirements for execution privacy and
computational resources.

• Some activities may be required to be performed
quickly while others may not. In a delayed
project, certain activities will be required to be
performed quickly to avoid further delays. In ad-
dition, critical activities that precede the execution
of many other activities are naturally expected to
be performed faster so that they do not block other
activities longer. These activities are referred to as
priority activities.

• Interactive activities are not executed on the
cloud since these activities may involve stake-
holders performing certain tasks offline. Like-
wise, scheduling the human activities (the ones
preformed solely by humans without any tool sup-
port) is not considered since it does not have an
impact on the cost of using the cloud.

• An activity becomes ready for execution once all
of its input artefacts become available.

• At any given time, there might be several ready-
to-execute activities from different processes.

• Activities execution times are presumed to be
known. Execution time estimation techniques are
available (e.g., (Jang et al., 2004)) but are out of
the scope of this chapter.

• The cost of executing an activity is dependent on
the time it takes to finish and the cost of data
transfer outside the cloud provider boundary. For
simplicity, both the public and the private cloud
resources are assumed to be located within two
data centres (one public and one private) and data
transfer between them is negligible. Therefore,
data transfer costs are assumed to be negligible.

The objectives of software process scheduling
are:

1. To allocate activities to a workflow engines pool
containing engines which match the required re-
sources by the activity.

2. To reduce the overall workflows cloud-based exe-
cution cost by switching workflow engines on/off
when needed/unneeded.
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3. Reducing the cost conflicts with the workflow
makespan (execution time). The scheduling
should minimize the impact of reducing the cost
on the workflow makespan.

4. To utilize the available workflow engines as best
as possible.

4.1 Terminology

Here, we define the terms related to the scheduling
process in the SDaaS reference architecture:

• Workflow engines pool: is a pool of workflow
engines deployed on similar virtual machines (in
terms of computational power and deployment
model).

• Workflow engines pool size (R): is the maximum
number of active workflow engines a pool can
have at any given operational hour.

• Workflow engine operational hours: are the
hourly units of time starting from the time a work-
flow engine starts.

• Workflow execution time: is the difference be-
tween the execution start time of the first activity
in the workflow and the execution end time of the
last activity in the workflow.

• Execution cost: is the cost of executing all the de-
sired workflows in the SDaaS architecture. This
can be calculated by aggregating the cost of run-
ning each workflow engine instance as follows:

Cost =
n

∑
i=1

V Mn ∗ tn (1)

Where V Mn is the price per partial hour for run-
ning the virtual machine hosting the workflow en-
gine and tn is the number of partial hours that the
workflow engine has been running.

4.2 Adapted Algorithms

In this subsection, we explain the adaptation of three
different scheduling algorithms to fit for scheduling
the execution of software processes in the cloud. Two
of these algorithms are adapted from the first come
first serve algorithm and the third one is adapted from
the Adaptive Task Schedule algorithm (see Section 3).
Unlimited First Come First Serve (UFCFS). This
is the simplest and most basic scheduling algorithm
where the pool size R is always set to infinity. Once an
activity is ready-to-execute, it is allocated to an avail-
able workflow engine in the relevant pool (if exists),

A c t i v i t y A;
L i s t<WorkflowEnginePool> p o o l s ;

s t a r t
f i n d a poo l i n p o o l s which match t h e

c o m p u t a t i o n a l r e s o u r c e s and p r i v a c y
r e q u i r e m e n t s o f A.

i f ( poo l i s found )
{

f i n d an a v a i l a b l e workflow e n g i n e
i f ( workf low e n g i n e i s found )

add A t o t h e j o b s queue o f t h e
e n g i n e ;
e l s e
{

c r e a t e and s t a r t a new workflow
e n g i n e and add A t o i t s j o b s queue

;
}

}
e l s e
{

c r e a t e a poo l ;
c r e a t e and s t a r t a new workflow
e n g i n e i n t h e new poo l and add A t o

i t s j o b s queue ;
}
end

Figure 2: Unlimited First Come First Serve algorithm.

otherwise a new pool and/or workflow engine are cre-
ated. Figure 2 shows the pseudo code of the UFCFS
algorithm.
Limited First Come First Serve (LFCFS). This is
a similar algorithm to the UFCFS except that there
is a limit on the number of active workflow engines
in any pool at any time. Figure 3 shows the LFCFS
algorithm. The pool size limit (R) is an arbitrary uni-
versal value which aims to restrict the execution cost.
If all workflow engines in a pool are busy and their
number has reached R and a new activity is ready to
be executed in this pool, the scheduler will allocate
this activity to the workflow engine with the earliest
finishing time. This means that the activity will be de-
layed until a suitable workflow engine becomes avail-
able again.
Pool-based Adaptive Task Schedule. This algo-
rithm is adapted from the Adaptive Task Schedule al-
gorithm (Wang et al., 2014) described in Section 3.
Unlike the original algorithm which has two ver-
sions (one looking forward and one backward), here
we only look at the expected activities in the next
hour (forward). Since the activities arrive in a non-
deterministic way, the history alone does not neces-
sarily give an accurate prediction for the predicted
load in the next hour. Another difference is that we
match the activities to pools and calculate R dynam-
ically for each pool rather than for the entire system,
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A c t i v i t y A;
L i s t<WorkflowEnginePool> p o o l s ;
i n t R ; / / t h e max number o f workflow

e n g i n e s i n any poo l

s t a r t :
f i n d a poo l i n p o o l s which match t h e

c o m p u t a t i o n a l r e s o u r c e s and p r i v a c y
r e q u i r e m e n t s o f A.

i f ( po o l i s found )
{

f i n d an a v a i l a b l e workflow e n g i n e ;
i f ( workf low e n g i n e i s found )

add A t o t h e j o b s queue o f t h e
e n g i n e ;
e l s e
{

i f ( number o f workf low e n g i n e s
i n poo l i < R )

c r e a t e and s t a r t a new
workflow e n g i n e and add A t o i t s
j o b s queue ;

e l s e
a l l o c a t e A t o t h e f i r s t

a v a i l a b l e e n g i n e ;
}

}
e l s e
{

c r e a t e a poo l ;
c r e a t e and s t a r t a new workflow
e n g i n e i n t h e new poo l and add A t o

i t s j o b s queue ;
}
end

Figure 3: Limited First Come First Serve algorithm.

hence the name Pool-based. This means that each
pool can have a different pool size calculated dy-
namically on every operational hour using the fol-
lowing formula:

Ri = T ∗Ei (2)

Where T is a universal arbitrary real value be-
tween 0 to 1 which indicates the proportion between
the activities to be executed and the workflow en-
gines. For example, when T is 0.5, it means that
there should be a workflow engine for each two ac-
tivities. Ei is the number of activities which match
pool i and are expected to be ready for execution in
the next hour.

Figure 4 shows this algorithm. As we can see,
the algorithm is very similar to the LFCFS algorithm
except that each pool has its own R.

A c t i v i t y A;
L i s t<WorkflowEnginePool> p o o l s ;
L i s t<i n t > R ; / / t h e max number o f

workf low e n g i n e s f o r each poo l

s t a r t :
f i n d a poo l i n p o o l s which match t h e

c o m p u t a t i o n a l r e s o u r c e s and p r i v a c y
r e q u i r e m e n t s o f A.

i f ( poo l i s found )
{

f i n d an a v a i l a b l e workflow e n g i n e ;
i f ( workf low e n g i n e i s found )

add A t o t h e j o b s queue o f t h e
e n g i n e ;
e l s e
{

i f ( number o f workf low e n g i n e s
i n poo l i < Ri )

c r e a t e and s t a r t a new
workflow e n g i n e and add A t o i t s
j o b s queue ;

e l s e
a l l o c a t e A t o t h e f i r s t

a v a i l a b l e e n g i n e ;
}

}
e l s e
{

c r e a t e a poo l ;
c r e a t e and s t a r t a new workflow
e n g i n e i n t h e new poo l and add A t o

i t s j o b s queue ;
}
end

Figure 4: Pool-based Adaptive task scheduling algorithm
adapted from (Wang et al., 2014).

4.3 The Proportional Adaptive Task
Schedule Algorithm

Similar to the Pool-based Adaptive Task Schedule and
the LFCFS algorithms, this algorithm restricts the cre-
ation of new workflow engines in a pool by a maxi-
mum limit R. The difference is that R is now calcu-
lated based on the proportion between the execution
time of the activities that are predicted to start in the
next hour and those which have started execution in
the past hour. The following formula is applied when
Ri for a given pool i is calculated for the first time:

Ri =

⌊
Tnext

60

⌋
(3)

Where Tnext is the total execution time of the ac-
tivities that will start in the next hour (in minutes).
Therefore, Ri is the floor of the expected execution
hours needed to execute the activities that would start
in the next hour. When Ri has been set before, the
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following formula is applied to calculate Ri on every
operational hour:

Ri =

⌈
Tnext

Tpast
∗Ri

′
⌉

(4)

Where Tpast is the total execution time (in min-
utes) of the activities that have started in the past hour
and Ri

′ is the last value of Ri. The algorithm itself
is the same as the pool-based adaptive task schedule
algorithm presented in Figure 4.

5 EVALUATION

To analyze the performance of the algorithms de-
scribed in the previous section, we simulate the ex-
ecution of each algorithm and measure two metrics:
(a) the makespan for each simulated workflow, and
(b) the total cost of executing all workflows. The sim-
ulation uses the four algorithms to schedule activities
from multiple workflow instances. In order to sim-
ulate a real workflow execution scenario, we gener-
ate requests to execute workflow instances at random
times to create non-determinism. In a real scenario,
workflow instances can be requested to be executed
at any time and might be executing in parallel with
some other instances. Since randomization is used,
there is a need to run the simulation several times and
calculate mean values for the desired metrics.

5.1 Input Process Models

We use three input workflow models of sizes 7, 9 and
10 activities. These models have different require-
ments for activities (a mixture of public/private and
priority/non-priority activities). The structure of these
models and which activity has which requirements
are irrelevant as the simulator randomly chooses a
time to trigger the request for each of the three in-
put models in each simulation iteration. This creates
a non-deterministic load on different computational
resources.

Figures 5, 6 and 7 illustrate the three input work-
flow models. Each activity is colour coded to identify
the machine type it requires. The execution time is
specified above each activity where a * symbol indi-
cates that the activity is a priority activity.

5.2 Workflow Engines

The workflow engines are where the execution of ac-
tivities takes place. For the purpose of this evalua-
tion, we are only concerned about how long it takes
to execute an activity. Workflow engines are hosted
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Figure 5: The first workflow input model.
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Figure 6: The second workflow input model.

on VMs. Thus, the execution cost would be the prod-
uct of the number of partial hours consumed and the
price of the VM. In this simulation, we use a subset
of Amazon EC2 VM pricing. Table 1 shows the list
of the VM types used and their prices as offered by
Amazon (at the time of writing) in the US-East region.
While Amazon prices are for public cloud VMs, we
assume that a private version of those VMs with the
same specifications would cost 10% more than their
public counterpart. This is because private cloud re-
quires in-house hardware and software maintenance,
power, cooling, etc.

5.3 Simulation Results

We run the simulation 8 different times (with differ-
ent configurations) and each run consists of 500 rep-
etitions. The UFCFS algorithm is run once while the
LFCFS is run three times (with the following values
for the limit: 1,2 and 4). The pool-based adaptive
task schedule algorithm is also run three times (with
the following values for the threshold: 0.33, 0.5 and
0.75). And the proportional adaptive task schedule
algorithm is run once.

During the simulation, the execution time of each
individual workflow instance and the overall execu-
tion cost of all three instances were captured in each
simulation run. In addition, we calculate the mean
value of all the 500 repetitions. The simulation results
are summarized in Table 2 where W1, W2 and W3 rep-
resent the execution times (in minutes) for workflows
1,2 and 3 respectively. In addition, l and t represent
limit and threshold respectively. We can notice that
(expectedly) the UFCFS algorithm gives the fastest
execution but also the most expensive one. On the
other hand, the Proportional Adaptive Task Sched-
ule algorithm gives the best cost efficiency (23.3%
cheaper than UFCFS), the best VM utilization and the
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Table 1: Workflow engine VM types and prices.

EC2 Machine Type Amazon (Public) Price ($) Private Price ($)
T2 SMALL 0.026 0.0286

T2 MEDIUM 0.052 0.0572
T2 LARGE 0.104 0.1144
M4 LARGE 0.12 0.132
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Figure 7: The third workflow input model.

second best overall execution time performance. Fig-
ure 8 shows a comparison between algorithms (and
their parameter variation) in terms of execution cost.

Mean Cost($)
UFCFS 1.59431
LFCFS (limit =1) 1.524407
LFCFS (limit =2) 1.906963
LFCFS (limit =4) 2.251986
Pool-based Adaptive (threshold = 0.33) 1.645002
Pool-based Adaptive (threshold = 0.5) 1.764554
Pool-based Adaptive (threshold = 0.75) 1.819752
Proportional Adaptive 1.229442
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Figure 8: Execution cost benchmark in all algorithms.

Figure 9 shows the benchmark of all algorithms
(the best performing parameter in the case of LFCFS
and Pool-based Adaptive Task Schedule) for one of
the input workflow models. The Proportional Adap-
tive Task Schedule gives the second best execution
time (after the UFCFS). In the following subsections
we detail the results further for each algorithm.

3-1 W3 2-1 W3 1 W3 4-2 W3
1-50 1.451682 1.39096 1.075554 1.271047
51-100 1.506155 1.548814 1.135068 1.298262
101-150 1.563711 1.509726 1.221089 1.330587
151-200 1.481288 1.480019 1.285989 1.32519
201-250 1.637431 1.612644 1.345224 1.353823
251-300 1.441148 1.391646 1.073543 1.276995
301-350 1.495077 1.434461 1.145412 1.281866
351-400 1.529966 1.481163 1.199034 1.372707
401-450 1.582454 1.504158 1.277133 1.389277
451-500 1.622476 1.577446 1.350472 1.414171
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Figure 9: Execution time benchmark for all algorithms for
workflow 3.

5.3.1 UFCFS

Figure 10 shows the normalized mean values for exe-
cution times of the three workflow input models. Nor-
malization (which is applied to all of the following

3-1 W2 2-1 W2 1 W2 4-2 W2
1-50 1.516444 1.570442 1.148513 1.369518
51-100 1.559828 1.669787 1.20844 1.457507
101-150 1.558867 1.604477 1.253881 1.453987
151-200 1.556417 1.660899 1.313592 1.430234
201-250 1.694997 1.723453 1.358359 1.513718
251-300 1.457664 1.563115 1.145716 1.407035
301-350 1.55846 1.605177 1.198127 1.39968
351-400 1.513479 1.63237 1.247091 1.463933
401-450 1.56585 1.639681 1.288553 1.487138
451-500 1.655772 1.722475 1.31908 1.483252

1 W1 1 W2 1 W3
1-50 1.030321 1.148513 1.075554
51-100 1.094156 1.20844 1.135068
101-150 1.17692 1.253881 1.221089
151-200 1.227422 1.313592 1.285989
201-250 1.389033 1.358359 1.345224
251-300 1.036838 1.145716 1.073543
301-350 1.09671 1.198127 1.145412
351-400 1.155234 1.247091 1.199034
401-450 1.309755 1.288553 1.277133
451-500 1.299114 1.31908 1.350472
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Figure 10: Execution times in UFCFS.

charts) is achieved by dividing each value by the min-
imum value in its category. In this chart (as well as
other charts in this paper), the simulation runs have
been grouped into groups of 50 runs and their mean
was calculated. As the figure shows, UFCFS provides
relatively low execution time since there are no delays
required. However, the execution cost and the number
of virtual machines used are relatively high as shown
in Table 2.

5.3.2 LFCFS

We simulated LFCFS with three different limit val-
ues. From these simulations, we conclude that arbi-
trarily choosing the best value for the limit parameter
is not possible as different values perform differently.
The input models and their structure and complexity
are among several factors that impact the results when
using a particular limit value. Such factors are unpre-
dictable, therefore, there is no systematic way for de-
ciding the best arbitrary limit value to use. Figure 11
shows the normalized mean execution time for each
workflow under the three different limit values as well
as the normalized execution cost. We can clearly see
that the cost increases linearly as the limit increases.
In contrast, the execution times are reduced when the
limit is higher.

5.3.3 Pool-based Adaptive Task Scheduling

By looking at the execution cost in Table 2 we see that
the lower the threshold, the lower the execution cost
as well. Finally, in Figure 12, we show the mean exe-
cution time for each workflow under different thresh-
old values. We also show the overall execution cost.
As expected, the higher the threshold, the faster and
more expensive the execution. But again, there is
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Table 2: Simulation results summary.

Algorithm Parameters W1 W2 W3 Cost ($) VM No.
UFCFS N/A 88.72 139.89 131.22 1.59 9.43
LFCFS l = 1 200.43 253.26 208.46 1.52 5.88
LFCFS l = 2 146.14 206.33 181.80 1.90 8.684
LFCFS l = 4 125.58 194.65 170.89 2.25 11.00

Pool-based
Adaptive t = 0.33 193.93 254.03 208.13 1.64 5.83

Pool-based
Adaptive t = 0.5 176.09 233.25 201.59 1.76 6.56

Pool-based
Adaptive t = 0.75 165.18 217.07 193.51 1.81 7.28

Proportional
Adaptive N/A 144.06 184.15 147.19 1.22 5.81

W1 W2 W3 Cost
LFCFS (limit 200.4372 253.2692 208.4627 1.524407
LFCFS (limit 146.1463 206.3342 181.8056 1.906963
LFCFS (limit 125.5861 194.6554 170.8933 2.251986

W1 W2 W3 Cost
LFCFS (limit 1.596015 2.016698 1.659918 1
LFCFS (limit 1.163714 1.64297 1.447657 1.250954
LFCFS (limit 1 1.549975 1.360766 1.477286

W1 W2 W3 Cost
Pool-based   193.9366 254.0341 208.1369 1.645002
Pool-based   176.0984 233.2577 201.5966 1.764554
Pool-based    165.1856 217.0775 193.5139 1.819752

W1 W2 W3 Cost
Pool-based   1.174052 1.537871 1.260018 1
Pool-based   1.066063 1.412095 1.220424 1.072676
Pool-based    1 1.314143 1.171493 1.106231
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Figure 11: Execution time and cost benchmark in LFCFS.

no precise mechanism for finding the right trade-off
point which also depends (in real situations) on un-
predictable input workflow models.

Mean Cost($)
UFCFS 1.59431
LFCFS (limit =1) 1.524407
LFCFS (limit =2) 1.906963
LFCFS (limit =4) 2.251986
Pool-based Adaptive (threshold = 0.33) 1.645002
Pool-based Adaptive (threshold = 0.5) 1.764554
Pool-based Adaptive (threshold = 0.75) 1.819752
Proportional Adaptive 1.229442
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Figure 12: Execution times and cost in Pool-based Adaptive
Task Schedule.

5.3.4 Proportional Adaptive Task Schedule

From Table 2 we can see that the Proportional Adap-
tive Task Schedule gives the best cost efficient sched-
ule and the second best execution times. Figure 13
shows the three workflows execution times when
scheduled using this algorithm. We can conclude that
this algorithm is the most cost-efficient and provides
the optimal workflows makespan among the four al-
gorithms we presented. It is 23.28% cheaper than the
UFCFS, 19.74% cheaper than the best LFCFS vari-
ation and 25.61% cheaper than the best Pool-based
Adaptive Task Schedule variation. Additionally, we

notice that the Proportional Adaptive Task Schedule
algorithm is the most efficient from a resource uti-
lization point of view (almost twice as efficient as the
UFCFS).

W1 W2 W3
1-50 1.823335 1.369518 1.271047
51-100 1.781586 1.457507 1.298262
101-150 1.951459 1.453987 1.330587
151-200 1.941784 1.430234 1.32519
201-250 2.018031 1.513718 1.353823
251-300 1.710113 1.407035 1.276995
301-350 1.814233 1.39968 1.281866
351-400 1.99367 1.463933 1.372707
401-450 2.048396 1.487138 1.389277
451-500 1.993219 1.483252 1.414171
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Figure 13: Execution times in Proportional Adaptive Task
Schedule.

6 CONCLUSION

In this paper, we have highlighted the need for cost-
aware scheduling of software processes workflows in
the cloud. We have shown that software processes
workflows contain different types of activities com-
pared to scientific and business workflows and that
the state-of-the-art scheduling algorithms do not meet
the needs of executing software processes workflows.
To meet these needs, we adapted three algorithms;
the Unlimited First Come First Serve (UFCFS), Lim-
ited First Come First Serve (LFCFS) and the Pool-
based Adaptive Task Schedule. We also proposed a
fourth one; the Proportional Adaptive Task Sched-
ule. We evaluated their performance (through sim-
ulation) in terms of overall execution cost and the
makespan of individual workflow instances. The sim-
ulation results show that the UFCFS gives the shortest
makespan while our proposed Proportional Adaptive
Task Schedule gives the most cost-effective sched-
ule, the best resource utilization and the second best
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makespan. Unlike the LFCFS and the Pool-based
Adaptive Task Schedule, the Proportional Adaptive
Task Schedule does not rely on any arbitrary val-
ues and balances between the execution cost and the
makespan.

The algorithms presented in this paper target
the cloud-based software process scheduling prob-
lem in the context of the SDaaS architecture. How-
ever, they can be applied to similar problems
which require resource-constrained project schedul-
ing (RCPSP) (ZDAMAR and ULUSOY, 1995) and
job-shop scheduling problem (JSSP) (Applegate and
Cook, 1991).

In the future, we plan to perform larger experi-
ments with larger process models (derived from real
software processes). These experiments will target
matching the PSBLIB (Kolisch and Sprecher, 1997)
benchmark for the RCPSP problem which is catego-
rized into 30, 60, 90, and 120 activity sets. Further,
we plan to increase the number of iterations to 1000
plus to show the performance of the algorithms.
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