
Pattern based Web Security Testing

Paulo J. M. Araújo1 and Ana C. R. Paiva1,2

1Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, s/n 4200-465 Porto, Portugal
2INESC TEC, Rua Dr. Roberto Frias, s/n 4200-465 Porto, Portugal

Keywords: Security Testing, Pattern based Testing, Pattern based Security Testing, Security Web Testing.

Abstract: This paper presents a Pattern Based Testing approach for testing security aspects of the applications under
test (AUT). It describes the two security patterns which are the focus of this work (“Account Lockout” and
“Authentication Enforcer”) and the test strategies implemented to check if the applications are vulnerable or
not regarding these patterns. The PBST (Pattern Based Security Testing) overall approach has two phases:
exploration (to identify the web pages of the application under test) and testing (to execute the test strategies
developed in order to detect vulnerabilities). An experiment is presented to validate the approach over five
public web applications. The goal is to assess the behavior of the tool when varying the upper limit of pages
to visit and assess its capacity to find real vulnerabilities. The results are promising. Indeed, it was possible to
check that the vulnerabilities detected corresponded to real security problems.

1 INTRODUCTION

To have quality today, a software application should
work flawlessly and be safe. However, exposure of
applications to undesirable attacks is common and
brings new challenges. Developers are concerned
mainly to create applications that work properly and
sometimes they neglect the security of the application.
That is why testing the developed application is criti-
cal to ensure the quality and reliability of the product.

However, the test implementation requires time
and money which are limited resources. In recent
years, a number of testing tools based on different
methodologies have emerged to try making the test-
ing process faster and more systematic. One of these
methodologies is testing based on models/patterns
which have been increasingly accepted (Utting and
Legeard, 2007).

In a previous project called PBGT (Pattern Based
GUI Testing) 1 we developed several tools to test soft-
ware applications through their Graphical User Inter-
face (GUI) (Moreira et al., 2013), (Moreira et al.,
2017), (Paiva and Vilela, 2017). The main goal of
PBGT is the develop generic test strategies to test
common recurrent behavior that can be applied over
different applications after a configuration step. This
is a black box testing approach with no access to the
source code of the applications under test. The test

1https://www.fe.up.pt/˜apaiva/pbgtwiki/doku.php

cases are built from a model describing the testing
goals and afterwards the testing process is automated.

The research work presented in this paper extends
the concepts developed within the PBGT project for
testing the security aspects of the web applications,
i.e., it develops test strategies to test known security
patterns.

A survey about security issues and security pat-
terns served as the basis for the development of
generic test strategies to test security patterns on dif-
ferent web applications. This work presents the test
strategies defined for two security patterns: “Authen-
tication Enforcer” and “Account Lockout”.

The remainder of this document covers state of the
art about security patterns in Section 2, presents the
contributions of the paper in Section 3, the validation
of PBST (Pattern Based Security Testing) through
case study is in Section 4 and finally some conclu-
sions in Section 5.

2 SECURITY PATTERS

Integrating security requirements at different stages
of the software development cycle is increasingly a
necessity and is a concern of both programmers and
stakeholders involved in the software development
process. However, there are still differences in how
security engineers and software engineers design the

472
Araújo, P. and Paiva, A.
Pattern based Web Security Testing.
DOI: 10.5220/0006606504720479
In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), pages 472-479
ISBN: 978-989-758-283-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



security requirements for a particular application.
There have been several methodologies that seek

to streamline and normalize the way to develop appli-
cations that require demanding quality requirements.
One of the most recent methodologies and one that
has an increasing number of adepts is the develop-
ment based on patterns.

Christopher Alexander (Alexander et al., 1977)
first defined patterns in architecture as a representa-
tion of the “current best guess as to what arrangement
of the physical environment will work to solve the
problem presented”. Generalizing this concept, one
can assert that a pattern is a recurring solution for a
recurring problem.

When considering security aspects (Heyman et al.,
2007a), security patterns can be defined as reusable
solutions for security problems.

As Thomas et al. (Heyman et al., 2007b) said,
it is more reliable to use the security features already
known and tested than to invent ad-hoc solutions from
scratch. From the article “Measuring the level of se-
curity introduced by security standards” (Fernández
et al., 2010) we can also conclude that the use of stan-
dards brings significant improvements in the final se-
curity of the developed system.

Different authors present different ways of clas-
sifying security patterns according to their points of
view, and a good classification of a pattern facilitates
the correct selection later.

Security patterns, according to Eduardo et al.
(Fernandez et al., 2008), can be grouped into the fol-
lowing categories: identification and authentication,
access control and authorization, registration, encryp-
tion and intrusion detection.

J. Yoder and J. Barcalow (Yoder and Barcalow,
1998) present a collection of seven security patterns:
single access point; check point; roles; session; full
view with errors; limited view; secure access layer.

Darrel et al. (Kienzle et al., 2006) show a reposi-
tory of 26 patterns and 3 mini patterns, that are orga-
nized in two groups: structural patterns, and procedu-
ral patterns.

Other authors present collections of patterns
grouped/classified in different forms (Anand et al.,
2014), (Heyman et al., 2007a), (Slavin et al., 2012).

As Ina Schieferdecker et al (Schieferdecker et al.,
2012) state, security testing is intended to validate that
in an application the following security properties are
guaranteed: confidentiality (guarantees the secrecy
of data), integrity (guarantees that data is not mod-
ified in an unauthorized way), authenticity (be sure
about the identity of a person), availability (means
that data/services are available) and non-repudiation
(ensure that a transferred message has been sent and

received by the parties claiming to have sent and re-
ceived the message).

It is therefore necessary to test the application us-
ing white-box tests to discover code faults written by
the developers and also to use black-box tests, that
is, to try to act as an attacker by attempting to pen-
etrate the system and observing how the Application
behaves in the face of such attempts to intrude and/or
tamper with the data.

The research work described in this paper is based
on the work developed by the authors Munawar Haifz
et al. (Adamczyk et al., 2007), (Hafiz et al., 2012)
which present the patterns organized by the STRIDE
threat model (developed by Microsoft). STRIDE
means Spoofing, Tampering, Repudiation, Informa-
tion Disclosure, Denial of Service, and Elevation of
Privileges.

• Spoofing is an attempt to gain access to any ap-
plication or system using a fake identity in which
a vulnerable system will give unauthorized access
to sensitive data.

• Tampering consists of tampering with data dur-
ing communication where data integrity is com-
promised.

• Repudiation arises when a user refuses to ac-
knowledge that he or she is the participant of a
particular transaction.

• Information Disclosure arises when confidential
data is exposed or lost unintentionally.

• Denial of Service is to cause failures in system
availability.

• Elevation of Privileges arises when a user is able
to exploit a vulnerability and access data and re-
sources for which the same user does not have ac-
cess privileges.

For each of these aspects, the authors define a set
of security patterns. As an example, for Spoofing we
have: Account Lockout; Assertion Builder; Authen-
tications Enforcer; Brokered Authentication; Creden-
tial Tokenizer; Intercepting Web Agent; Message Re-
play Detection, and Network Address Blacklist.

As already mentioned, many of the patterns are
common among several approaches of different au-
thors. In the web page that is maintained by one of
the authors (SPC, 2017), one can obtain more de-
tails about each one of the patterns, the relationships
among them, as well as the totality of the patterns pro-
posed by them.

However, most of these patterns are frequently
disregarded in software development.

In recent years there has been an increase in the
number of security testing tools available, with tools

Pattern based Web Security Testing

473



focused on only one or a few vulnerabilities, and
others that seek to cover as many known vulnera-
bilities as possible. Some examples are Acunetix
(Acunetix, 2017), BeEF (BeEF, 2017), Burp Suite
(portswigger, 2017), Iron Wasp (ironwasp, 2017),
NetSparker (netsparker, 2017), SQLMap (sqlmap,
2017), Sqlninja (sqlninja, 2017), Vega (Vega, 2017),
W3af (w3af, 2017), Wapiti (wapiti, 2017), ZAP (ZAP,
2017).

However, as far as we know, none of them is or-
ganized by security patterns. That is why developing
a generic testing approach that is able to detect if the
security patterns were taken into account during de-
velopment and are well implemented may be useful.

3 PATTERN BASED SECURITY
TESTING

The purpose of this work is to test security patterns
following a black-box testing approach. The goal is
to define and implement generic test strategies that
are able to detect if security patterns were taken into
account during the development and, ultimately, con-
tribute for better software.

The security patterns that the PBST (Pattern
Based Security Testing) tool developed in this work is
able to test now are “Account Lockout” and “Authen-
tication Enforcer” as described in (Adamczyk et al.,
2007), (Hafiz et al., 2012).

Account Lockout is intended to protect accounts
from automatic attacks based on the “guessing” of
passwords. When implementing a limit number of at-
tempts followed with wrong passwords for the same
user prevents or at least hampers the task of hackers.
To protect the systems against this attack one can lock
the account after N incorrect attempts.

Authentication Enforcer is responsible for authen-
ticating and verifying user identity. One way to pre-
vent impostors from accessing the system is by cre-
ating a single point of access where all requests to
enter the system are checked and apply an authenti-
cation protocol to verify the identity of the agent. On
successful authentication, create a proof of identity of
the agent (Hafiz et al., 2012).

In order to check if these security patterns were
well implemented, a test strategy was defined and will
be explained in more detail in subsection “Tester”.

The goal is to identify possible vulnerabilities that
report that a security pattern is not well implemented.
So, we started by grouping known vulnerabilities
around security patterns and afterwards defined a set
of test strategies to detect those vulnerabilities.

3.1 Tool

The PBST testing tool has four main components:
Graphical User Interface, Explorer, Tester, Report
generator.

3.1.1 Graphical User Interface

The Graphical User Interface (GUI) establishes the
interaction with the testers / users. The main menu
of the tool is shown in Figure 1.

Figure 1: Menu of the PBST tool.

3.1.2 Explorer

The PBST tool starts by exploring the web application
under test trying to find all its web pages.

For each discovered page it is necessary to collect
all the useful information available. Within this in-
formation there is, for example, the information con-
tained in the meta, script, link and form tags. In ad-
dition to the tags, we can also read comments that
may exist in the source code of the page in search
of possible keywords forgotten by the programmers
such as: query, password and user. Other information
to collect is the headers sent in the server response and
the cookies. The implementation needed to obtain the
cookies is not implemented in the current state of the
tool.

For each URL that is discovered by the explorer
process one or two accesses are made to the server,
first without authentication and, in case of failure, an-
other one using the credentials provided to authenti-
cate. This procedure besides allowing to obtain infor-
mation of both public accessed pages also allows to
obtain information of pages of restricted access and
to catalog the pages like being of public access or of
private access.

Several threads were used to make this tracking
process as efficient as possible. In order to not over-
load the system, only with this application, the num-
ber of threads thrown take into account the number
of processors, with as many threads as possible being
created in the processors on the computer where the
application is running.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

474



The search is performed using BFS (Breadth-First
Search) width lookup. Departing from the provided
URL (seed / root), all URLs achievable from it are
placed in a FIFO (First In, First Out) queue. For each
new URL of the web application found, we search
all URLs achievable from it and so forth. All the new
URLs found are placed at the end of the queue (only if
not yet explored). To know which URLs were already
explored (ensure that the same URL is not queued
twice), we maintain an auxiliary control list with all
already explored URLs. The search ends when the
queue is empty (when there are no more URLs to ex-
plore).

In addition, each analyzed URL is added to a list
to be tested by the attack and analysis (tester) compo-
nent. Two URLs are equal if they have the same base
URL, i.e., if they differ only in the arguments they are
considered the same.

The upper limit of URLs explored is defined by
the tester.

3.1.3 Tester

After exploration, each page selected for testing is
tested according to the security patterns selected by
the tester. After the test is finished, information about
the success or failure of the test / attack is saved.

Although the application tests security patterns, in
reality what is done is to check whether or not the
application has a particular vulnerability related to a
security pattern. These vulnerability tests are grouped
around security patterns in order to ensure that a par-
ticular security pattern is present and whether or not
vulnerabilities related to that pattern are present. If no
vulnerabilities are detected in any of the tests selected
to test the security pattern in question then it is possi-
ble to say that it is not vulnerable (at least within the
vulnerabilities known at the moment and tested).

For the ”Account Lockout” standard only a test is
necessary. The goal is to try invalid login (username
and password) several times to check if the access is
blocked. This test strategy is detailed in Section “Ex-
periment”.

To validate the correct implementation of the “Au-
thentication Enforcer” security pattern, several tests
are necessary but only four 2 are developed related to
the following vulnerabilities: Clickjacking; Transport
Credentials; SQL Injection; Default Credentials. We
explain these vulnerabilities in more detail in the se-
quel.

• Clickjacking – This is when an attacker uses mul-
tiple transparent or opaque layers to fool a user.
So the attacker is to ”hijack” clicks to your page

2www.owasp.org

and forward them to another page, probably be-
longing to another application, domain or both.

• Transport credentials – Testing the transport of
credentials means verifying that the user’s authen-
tication data is transferred through an encrypted
channel to avoid being intercepted by malicious
users. The analysis simply focuses on trying to
understand whether the data travels unencrypted
from the web browser to the server, or if the Web
application takes appropriate security measures
using a protocol such as HTTPS.

• SQL injection – It consists of the insertion or
“injection” of a partial or complete SQL query
through data entry or transmitted from the client
(browser) to the web application.

• Default credentials – Nowadays, it is common for
software applications to use popular open source
or commercial software that can be installed on
servers with minimal configuration or customiza-
tion by the server administrator. In addition, many
hardware devices (for example, network routers
and database servers) offer web-based configu-
ration or administrative interfaces. Often, this
reused software/applications, once installed, is
not configured correctly and the default creden-
tials provided for initial authentication and config-
uration are never changed These default creden-
tials are well known to penetration testers and, un-
fortunately, also by malicious attackers who can
use them to gain access to various types of appli-
cations.

To identify the presence of these vulnerabilities,
we developed generic test strategies for each of the
them. When one of these vulnerabilities is detected
by the tests, it is possible to say that the application
under test has an incorrect implementation of the “Au-
thentication Enforcer” pattern.

Clickjacking

To test the clickjacking vulnerability, the headers of
the AUT are scanned to see if the “x-frame-options”
option is present. If this header is not present the ap-
plication is potentially vulnerable to clickjacking un-
less other mechanisms are implemented that prevent it
from being able to place the application inside a frame
of another application (malicious application).

Transport Credentials

In order for an application not to be vulnerable while
sending the access credentials to the server, they must
be sent using the POST method and the transport

Pattern based Web Security Testing

475



channel must be secure, so the HTTPS protocol must
be used. In this way, to validate whether or not an ap-
plication has this vulnerability, an analysis is made of
the authentication form in order to check which pro-
tocol is used to send the credentials to the server.

SQL Injection and Default Credentials

The security tests of SQL Injection are tests that at-
tempt to log in via SQL sent, as access attempts, in
the username and password. For this test, we used
the list of possible strings to input as username and
password shown in Figure 2.

Figure 2: Strings used in SQL Injection for username and
password fields.

The security tests of Default Credentials attempt
to log in via default words sent as access attempts in
the username and password. Default words are used,
for instance, in test environments and, several times,
forgotten going to production which allows improper
accesses to the software in production. To test if it
is possible to log in with default credentials the list
of strings shown in Figure 3 was used (the quotation
marks are not part of the string):

Figure 3: Default values used in username and password
fields.

The tool tests all the combinations of username
and password shown in Figure 3 and also repetition
of the same word, e.g., adminadmin, which are also
common as default words.

Account Lockout

To test the “Account Lockout” pattern, it is only nec-
essary to perform a test. This test consists of trying to
enter a wrong login data three times (the same login
with different wrong passwords). After three invalid
attempts, a correct access with the correct credentials
is done. If the access is successful then we already
know that the application does not block after three
invalid attempts. In this case, the test is repeated, but
this time with five invalid attempts followed by the
sixth attempt with the correct credentials. In this case,
if the sixth access is successful then we can consider
that the application has vulnerabilities in the pattern
“Account Lockout”, because the security pattern ad-
vises to block the application after three or five invalid
attempts.

3.1.4 Report Generator

Figure 4 shows a report generated after a test per-
formed to a website with only six pages. The report
shows the URL of the AUT, the number of pages clas-
sified as public or private, the number of URLs se-
lected for testing and tested, part of the list of security
patterns “Not tested”, the result of the test for the web
pages tested and the details about the vulnerabilities
detected for each of the tested patterns. In this Fig-
ure 4, it can be seen that for the TdinApp both tested
patterns are identified as vulnerable and regarding the
“Account Lockout” pattern, all vulnerabilities tested
for this pattern were detected.

Finally, it is also possible to see that, right now, all
security patterns except “Account Lockout” and “Au-
thentication Enforcer” are not yet implemented and
because of that “Not tested”.

4 CASE STUDY

The goal of this case study is to validate the PBST
testing approach, namely:

• Assess how the PBST tool behaves when varying
the upper limit of web pages to explore;

• Assess if the PBST tool is able to detect vulner-
abilities and if the ones detected are actually real
vulnerabilities (true positives).

Current Restrictions of the PBST Tool

At this point in time, the application only tests web
pages containing forms, without using JavaScript, and
pages where the authentication mechanism is done
only by the use of username and password. Because

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

476



Figure 4: Report generated.

of these limitations, the explorer phase selects only
the pages that meet these requirements for testing.

4.1 Subjects

In order to validate the testing approach developed,
we selected five web applications public available:

• SIGARRA – is the information system of the Uni-
versity of Porto and was selected because it is a
large application that presents the authentication
form on many of its web pages.

• jigsawplanet – this application was selected after
an Internet search for free applications and it was
referenced on a page that advertises various appli-
cations.

• TdinApp – this application was created in a
project of the discipline of Distribution and Inte-
gration Technologies. Since we had access to the
source code, this application was useful to check
if the results obtained by the PBST tool were al-
tered if a vulnerability was removed. This appli-
cation was only available on localhost.

• acunetix – this application was selected because
it was created with the purpose of being used to
validate test tools or for the training of security
testing specialists (e.g., testasp). This application
contain several security vulnerabilities. There is a
blog where you can find this and other test pages.

• testfire – this application was selected because the
same reasons as acunetix above.

4.2 Experiment

The experiment was divided in three phases:

• the first phase aimed to test the explorer compo-
nent;

• the second phase aimed to test the explorer and
the testing of the two patterns: “Authentication
Enforcer” and “Account Lockout”;

• the third phase aimed to test the overall process.

4.2.1 First Phase

The tests in this phase are intended to verify how
the application behaves when varying the number of
pages to test (the upper limit of pages to visit is a pa-
rameter defined by the tester). We used three of the
subjects. During this experiment, we extracted met-
rics such as time and quantities of pages selected for
testing (according to the actual restrictions of the tool
already mentioned). The results are in Figure 5.

Figure 5: Time taken in seconds.

Figure 6 shows the number of pages that were se-
lected for testing within the search limit.

Figure 6: Pages selected for test.

4.2.2 Second Phase

During this phase we tested the “Authentication En-
forcer” and the following vulnerabilities: “clickjack-
ing”, “credentials transport”, “SQL Injection” and
“default credentials”.

To verify that the application actually detects the
“clickjacking” vulnerability, a script has been created

Pattern based Web Security Testing

477



Figure 7: Script to confirm clickjacking vulnerability.

to run manually and to make sure the result of the test
was correct (Figure 7).

Within the group of pages marked, by the PBST
application, as containing the “clickjacking” vulnera-
bility, we selected some to verify if with the auxiliary
script it was possible to place the application within
a frame. All the pages checked by this process con-
firm that the result of the test was correct. Indeed, the
pages marked as vulnerable were in fact vulnerable.
We also checked if the result of the test was correct
for the pages marked has not vulnerable. Indeed, for
these pages it was not possible to place them inside a
frame so, the result of the test was correct.

When the PBST detects a vulnerability regarding
SQL injection it provides information about the string
used that allowed the detection of the vulnerability.
In case of the “testfire” such string was ’ or’ ”&’. In
the case of the “Default Credentials” vulnerability, the
application also provides the strings used for the user-
name and for the password. In the case of “testfire”
such strings were admin and admin.

Considering the whole set of applications tested,
the only one that did not present any of the vulnerabil-
ities of the pattern “Authentication Enforcer” was the
application “jigsawplanet”. For all the others some
vulnerabilities were detected. In particular, the ap-
plication testfire had all the vulnerabilities associated
with this test can be seen in Figure 4.

4.2.3 Third Phase

At this phase the exploration and testing of the two
patterns were tested. This phase is necessary and
complements the previous one because the lockout
test can only be performed after all the rest is finished.

Regarding the application “jigsawplanet”, it is se-
cure for “Authentication Enforcer” but vulnerable for
“Account Lockout”.

In order to check if the “Account Lockout” pat-
tern was well detected, we manipulated the applica-
tion “TdinApp”. We obtained results according to the
manipulation which confirms the correctness of the
testing strategy.

5 CONCLUSIONS

This paper presented a new approach to test secu-
rity aspects of web applications organized by secu-
rity patterns. The patterns implemented right now are
the “Authentication Enforcer’ (which checks vulner-
abilities related to clickjacking, transport credentials,
SQL Injection and Default Credentials) and “Account
Lockout” (which checks if the application blocks af-
ter three or five invalid login attempts).

Grouping vulnerability testing into security pat-
terns can be an asset to a test application in that it
is thus possible to assert that at the time the test was
performed and for known vulnerabilities at that time,
the application is either “safe” / “well implemented”
or “Not safe” / “Not well implemented” regarding a
certain security pattern. This structure may help the
programmers to identify which aspects they have to
improve in order to fix the problems detected. An-
other advantage is that it may be a requirement for
a particular application to have certain security pat-
terns, but at the same time there may be others that are
irrelevant, so that having the tests grouped by patterns
allows an easily selection of the group of vulnerabili-
ties that are necessary to test.

This paper explains how the PBST tool works and
presents a case study to validate the overall approach.
From the experiments performed, it is possible to state
that PBST is able to identify vulnerabilities success-
fully. Of course, the application still needs a lot of de-
velopment to extend the number of security patterns
tested and be a really useful tool.

During the validation phase we tested the PBST
tool over five applications and the results were
promising. We detected vulnerabilities and confirmed
that the vulnerabilities detected corresponded to real
problems.

Excluding Sigarra application and according to
the experiments, it is possible to say that the time
spent with the exploration increases linearly with the
upper limit of pages to visit. Of course, this time is
also influenced by other factors such as the process-
ing capacity of the computer, the Internet connection
and the speed of response of the Server where the ap-
plication is hosted.

As future work we aim to extend the set of security
patterns to test because, at this point in time, some
vulnerabilities may be undetected.

The exploration needs also improvements since
we have restrictions regarding the web pages we are
able to test right now which need to be overcome.

Right now the exploration stops when the tester
presses a button for that or when the exploration
reaches the upper limit of pages to visit. In the fu-

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

478



ture it may the helpful to have time limit.
Finally, we aim to test the overall approach over

more web applications.

REFERENCES

Acunetix (2017). Advanced penetration testing tools
included. http://www.acunetix.com/vulnerability-
scanner/penetration-testing/. [Accessed on
12/7/2017].

Adamczyk, P., Hafiz, M., and Johnson, R. E. (2007). Orga-
nizing security patterns. IEEE Software, 24:52–60.

Alexander, C. W., Ishikawa, S., Silverstein, M., and Jacob-
son, M. (1977). A Pattern Language: Towns, Build-
ings, Construction. Oxford University Press, New
York, New York, USA, 1 edition.

Anand, P., Ryoo, J., and Kazman, R. (2014). Vulnerability-
based security pattern categorization in search of
missing patterns. In Proceedings of the 2014 Ninth
International Conference on Availability, Reliability
and Security, ARES ’14, pages 476–483, Washington,
DC, USA. IEEE Computer Society.

BeEF (2017). The browser exploitation framework project.
//beefproject.com/. [Accessed on 27/7/2017].

Fernandez, E. B., Washizaki, H., Yoshioka, N., Kubo, A.,
and Fukazawa, Y. (2008). Classifying Security Pat-
terns, pages 342–347. Springer Berlin Heidelberg,
Berlin, Heidelberg.

Fernández, E. B., Yoshioka, N., Washizaki, H., and Van-
Hilst, M. (2010). Measuring the level of security in-
troduced by security patterns. In ARES 2010, Fifth
International Conference on Availability, Reliability
and Security, 15-18 February 2010, Krakow, Poland,
pages 565–568.

Hafiz, M., Adamczyk, P., and Johnson, R. E. (2012). Grow-
ing a pattern language (for security). In Proceedings
of the ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and
Software, Onward! 2012, pages 139–158, New York,
NY, USA. ACM.

Heyman, T., Yskout, K., Scandariato, R., and Joosen, W.
(2007a). An analysis of the security patterns land-
scape. In Third International Workshop on Software
Engineering for Secure Systems, SESS 2007, Min-
neapolis, MN, USA, May 20-26, 2007, page 3.

Heyman, T., Yskout, K., Scandariato, R., and Joosen, W.
(2007b). An analysis of the security patterns land-
scape. In Proceedings of the Third International
Workshop on Software Engineering for Secure Sys-
tems, SESS ’07, pages 3–, Washington, DC, USA.
IEEE Computer Society.

ironwasp (2017). Iron web application advanced secu-
rity testing platform. //ironwasp.org/. [Accessed on
27/7/2017].

Kienzle, D. M., Elder, M. C., D, P., D, P., Tyree,
D., and Edwards-hewitt, J. (2006). Security pat-
terns repository, version 1.0. http://www.scrypt.

net/celer/securitypatterns/repository.pdf. [Accessed
on: 12/7/2017].

Moreira, R., C.R. Paiva, A., and Memon, A. (2013). A
pattern-based approach for gui modeling and test-
ing. In 2013 IEEE 24th International Symposium on
Software Reliability Engineering, ISSRE 2013, pages
288–297.

Moreira, R. M. L. M., Paiva, A. C. R., Nabuco, M., and
Memon, A. (2017). Pattern-based GUI testing: Bridg-
ing the gap between design and quality assurance.
Softw. Test., Verif. Reliab., 27(3).

netsparker (2017). Netsparker web application security
scanner. //www.netsparker.com/. [Accessed on
27/7/2017].

Paiva, A. C. R. and Vilela, L. (2017). Multidimensional test
coverage analysis: PARADIGM-COV tool. Cluster
Computing, 20(1):633–649.

portswigger (2017). Automated crawl and scan. //portswig-
ger.net/burp/. [Accessed on 27/7/2017].

Schieferdecker, I., Grossmann, J., and Schneider, M. A.
(2012). Model-based security testing. In Proceedings
7th Workshop on Model-Based Testing, MBT 2012,
Tallinn, Estonia, 25 March 2012., pages 1–12.

Slavin, R., Shen, H., and Niu, J. (2012). Characteriza-
tions and boundaries of security requirements pat-
terns, pages 48–53.

SPC (2017). Security Pattern Catalog. http://munawarhafiz.
com/securitypatterncatalog/index.php. [Accessed on:
12/7/2017].

sqlmap (2017). Automatic sql injection and database
takeover tool. //sqlmap.org/. [Accessed on
27/7/2017].

sqlninja (2017). A sql server injection and takeover tool.
//sqlninja.sourceforge.net/. [Accessed on 27/7/2017].

Utting, M. and Legeard, B. (2007). Practical Model-Based
Testing: A Tools Approach. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA.

Vega (2017). vega vulnerability scanner. //sub-
graph.com/vega. [Accessed on 27/7/2017].

w3af (2017). w3af. //w3af.org/. [Accessed on 27/7/2017].
wapiti (2017). Wapiti – the web-application vulnerabil-

ity scanner. //wapiti.sourceforge.net/. [Accessed on
27/7/2017].

Yoder, J. and Barcalow, J. (1998). Architectural patterns for
enabling application security.

ZAP (2017). The owasp zed attack proxy (zap).
//www.zaproxy.org/. [Accessed on 27/7/2017].

Pattern based Web Security Testing

479


