Clone Detection for Ecore Metamodels using N-grams

Önder Babur
Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands

Keywords: Model-driven Engineering, Model Clone Detection, R, Vector Space Model, Clustering.

Abstract: Increasing model-driven engineering use leads to an abundance of models and metamodels in academic and industrial practice. A key technique for the management and maintenance of those artefacts is model clone detection, where highly similar (meta-)models and (meta-)model fragments are mined from a possibly large amount of data. In this paper we extend the SAMOS framework (Statistical Analysis of MOdelS) to clone detection on Ecore metamodels, using the framework’s n-gram feature extraction, vector space model and clustering capabilities. We perform a case analysis on Ecore metamodels obtained by applying an exhaustive set of single mutations to assess the precision/sensitivity of our technique with respect to various types of mutations. Using mutation analysis, we also briefly evaluate MACH, a comparable UML clone detection tool.

1 INTRODUCTION

Model-driven engineering (MDE) promotes the use of models (and metamodels to which they conform) as central artefacts in the software development process. While this is recommended for the sake of ease of development and maintenance of software artefacts (notably source code), increasing MDE adoption leads to an abundance of models in use. Some examples of this include the academic efforts to gather models in repositories, or simply large-scale MDE practices in the industry (Babur et al., 2017). This leads to a challenge in the management and maintenance of those artefacts. One of those challenges is the identification of model clones, which can be defined in the most general sense as duplicate or highly similar models and model fragments. To draw a parallel, code clones have attracted the attention of the source code analysis community, who had to deal with the maintenance of large amounts of artefacts (source code) for a longer time than the MDE community. There is a significant volume of research on code clones, elaborating the drawbacks of having clones (e.g. major source of defects, higher maintenance cost, less reusability, etc.), while providing techniques and public tools for their detection (Roy et al., 2009).

Model clone detection, on the other hand, is a relatively newer topic. Many researchers have drawn parallels from code clones, and claimed that a lot of the issues there can be directly translated into the world of models. While the problem domain is indeed easily relatable, the solution proves to be a challenge. To mention two of the arguments there, source code clone detection usually works on linear text or abstract syntax tree of the code while models are general graphs (Deissenboeck et al., 2010); and many other aspects are inherently different for models, such as tool-specific representations, internal identifiers and abstract vs. concrete syntaxes (Störrle, 2013).

There are several approaches for model clone detection in the literature (Deissenboeck et al., 2010), yet we are particularly interested in ones with a publicly available tool to be reused in our studies. A good portion of such tools are either limited to, tailored for, or evaluated on MATLAB/Simulink models, and built on top of a backend originally intended for code clone detection. Notable examples are ConQAT/CloneDetective (Deissenboeck et al., 2008); and Simone/NiCaD (Alalfi et al., 2012). Another interesting approach for Simulink models is ModelCD based on graph comparison (Pham et al., 2009), but the tool is not publicly available. Last but not least, Störrle presents an approach and an accompanying available tool, MQclone, for UML models (Störrle, 2015). There, the author elaborately describes and classifies UML model clones; noting the differences compared to code clones and Simulink model clones. Furthermore, the author reports for MQclone a much higher performance and scalability compared to ConQAT and ModelCD. Another recent account of relatively
low scalability of those tools can be found in the literature (Strüber et al., 2016). MQalone is integrated into the publicly available tool suite MACH², though in a very limited manner - with almost no control over the rich set of algorithms and settings developed by Störrle. Other approaches, though of relatively less importance for the scope of this paper, involve clone detection and/or model matching for UML sequence diagrams (Liu et al., 2006) and business process models (Dijkman et al., 2011).

In pursuit of detecting clones in large repositories of Ecore metamodels and large evolving industrial domain-specific language (DSL) ecosystems based on Eclipse Modelling Framework (EMF), we have investigated the feasibility of existing tools for our purpose with three major requirements: (1) conceptual and technological applicability to Ecore metamodel clones; (2) sensitivity to all possible metamodel changes, in other words accuracy; and (3) scalability for large datasets. As a starting point, we have turned to MACH as a promising candidate. While scoring very high with respect to the first and third requirement (as metamodels are similar to UML class diagrams), it has underperformed in terms of the second one as we will show in Section 5.

We have eventually taken an orthogonal approach by extending and applying the SAMOS framework (Statistical Analysis of MOdelS), a novel tool developed for large-scale analysis of models (Babur, 2016). We wish to exploit the underlying capabilities of the framework - incorporating information retrieval-based fragmentation, natural language processing and statistical algorithms - for model clone detection. In this paper, we describe how we have extended and tailored SAMOS for metamodel clone detection. To mine metamodel clones, we have used the n-gram feature extraction facility of the framework, integrating additional scoring capability and extended distance measures and a density based clustering algorithm. We have evaluated our technique using the mutation analysis approach (Stephan et al., 2013) based on single mutations, where we performed a case analysis to assess the sensitivity of our technique for each case. We finally draw conclusions on the applicability of SAMOS to metamodel clone detection and suggest potential future work in terms of our technique and its further evaluation.

2 BACKGROUND: STATISTICAL ANALYSIS OF MODELS

We outline here the underlying concepts of SAMOS (Babur, 2016) and (Babur et al., 2016) inspired by information retrieval (IR) and machine learning (ML) domains. IR deals with effectively indexing, analyzing and searching various forms of content including natural language text documents (Manning et al., 2008). As a first step for document retrieval in general, documents are collected and indexed via some unit of representation. Index construction can be implemented using vector space model (VSM) with the following major components: (1) a vector representation of occurrence of the vocabulary in a document, named term frequency, (2) zones (e.g. 'author' or 'title'), (3) weighting schemes such as inverse document frequency (idf), and zone weights, (4) Natural Language Processing (NLP) techniques for handling compound terms, detecting synonyms and semantically related words. The VSM allows transforming each document into an n-dimensional vector, thus resulting in an m × n matrix for m documents. Over the VSM, document similarity can be defined as the distance (e.g. euclidean or cosine) between vectors. These can be used for identifying similar groups of documents in the vector space via an unsupervised ML technique called clustering (Manning et al., 2008).

SAMOS applies this workflow to models: starting with a metamodel-driven extraction of features. Features can be, for instance, singleton names of model elements (very similar to the vocabulary of documents) or n-gram fragments (Manning and Schütze, 1999) of the underlying graph structure. N-grams originate from computational linguistics and represent linear encoding of (text) structure. An example in our context, an example n-gram for a UML class diagram would be for n = 2 a Class containing a Property (Babur and Cleophas, 2017). Via comparison schemes (e.g. whether to check types), weighting schemes (e.g. Class weight higher than Property) and NLP (stemming/lemmatisation, typo and synonym checking, etc.), it computes a VSM. Applying various distance measures suitable to the problem at hand, SAMOS applies different clustering algorithms (via the R statistical software) and can output automatically derived cluster labels or diagrams for visualisation and manual inspection/exploration. Figure 1 roughly illustrates the workflow, with key steps of the workflow and several application areas including domain analysis and clone detection.

²http://www2.compute.dtu.dk/~hsto/tools/mach.html
3 METAMODEL CLONES

Metamodel clones might exist due to a wide range of reasons including copy-paste or clone-and-own approaches for development (Deissenboeck et al., 2010), or lack of abstraction mechanisms in metamodels (Sutii et al., 2017). In our research, we are interested in finding similar (fragments of) metamodels, with several problems at hand. A non-exhaustive list is as follows:

- Clone detection in DSL ecosystems for quality assurance/refactoring,
- Empirical studies on DSL evolution and comparison of DSLs from related domains,
- Clone detection in metamodel repositories/datasets for repository management and data preprocessing,
- Plagiarism detection in the assignments of our metamodelling course.

While metamodel clones have not been specifically studied in the literature, they possess a certain parallelism to UML domain models, class diagrams in particular. Hence our conceptualisation of metamodel clones is mostly adopted from (Störrle, 2015). Störrle presents a series of arguments involving several characteristics of models such as secondary notation, internal identifiers, and most importantly emphasises that names of model elements are essential parts of models. We agree with all of the arguments in the context of EMF metamodel clones, and the contrast with the common model clone classification scheme for Simulink models. For Simulink models, the classification includes Type-I clones for exact clones, Type-II for renamed clones with consistently changed identifiers, Type-III near-miss clones with small changes in model elements (Alalfi et al., 2012). A notable change is that Störrle’s classification rules out Type-II clones due to the indispensability of element names. Our clone classification is the following, adding a few NLP-related items to Störrle’s classification and omitting Type-D (for the scope of this paper):

- Type-A. duplicate model fragments except secondary notation (layout, formatting), internal identifiers.
 - Plus any cosmetic change in the names (lowercase/uppercase, snake-camelcase, etc.)
- Type-B. duplicate model fragments with small percentage of changes to names, types, attributes, few additions/removals of parts.
 - Plus potentially many syntactic/semantic changes in the names such as typos, synonyms.
- Type-C. duplicate with substantial percentage of changes/additions/removals of names, types, attributes and parts.
4 EXTENDING SAMOS FOR CLONE DETECTION

We have extended various features of SAMOS, in order to apply it to metamodel clone detection. In this section, we elaborate the extensions, compartmentalised as key steps of the workflow.

Scoping. While originally the framework handles whole models and extracts all the model elements contained, we introduce the notion of scoping to define the granularity of independent data elements. For Ecore metamodels, we define three scopes: whole model, EPackage and EClass. The scope guides the extraction by mapping a model into one (e.g. whole model) or more data points (e.g. per EPackage contained). Given a fixed scope, we adopt the approach in (Störrle, 2015) and cover all the model elements under transitive containment closure of that starting model element. Note that scoping does not affect the features (i.e. columns) in the vector space, but only the data points (i.e. rows).

Extracting Model Element Information. The main unit of information extracted by SAMOS has previously been the so-called type-name pair, which essentially maps to a vertex in the underlying graph of the model. Such a pair encodes the domain type (eType) information (e.g. EClass) and the name (e.g. Book) of a model element. For proper clone detection, we need to cover all the information in a model element, including attributes (e.g. whether an EClass is abstract), cardinalities (e.g. of EReferences), and so on. We also need to explicitly capture the edges (e.g. containment) to include for comparison. Therefore, we have extended the original feature hierarchy in SAMOS with (1) AttributedNode, which holds all the information of a vertex including domain type, name, type, attributes, etc. as key-value pairs; and (2) SimpleType, which holds only type information - e.g. the edge type of containment in this work.

There are several implementation details to mention further about the extraction:
- Our current implementation covers the full Ecore meta-metamodel for extraction, except EAnnotations, EFactories and generic types.
- Observing that most attributes in Ecore metamodels are used with default values, we only encode non-default values in our AttributedNodes to reduce the data size and speed up the comparison.
- Another change from (Babur et al., 2016) is that we push the type information (e.g. what EDataType is assigned to an EAttribute) into the AttributedNode, rather than representing it as a separate vertex connected to the original vertex. This is done so that the framework avoids matching irrelevant features just because of matching types, e.g. all EAttributes with the type String.

To exemplify, see the graph in Figure 2, where the vertices are simplified to domain type and name information with the rest of the attributes being hidden. Several example AttributedNode features to be extracted in our approach would be:
- $v_1 = \{\text{name} : \text{LocatedElement}, \text{type} : \text{EClass}, \text{abstract} : \text{true}\}$,
- $v_2 = \{\text{name} : \text{location}, \text{type} : \text{EAttribute}, \text{eType} : \text{EString}, \text{lowerBound} : 1\}$,
- $v_3 = \{\text{name} : \text{Bibtex}, \text{type} : \text{EClass}\}$,
- $v_4 = \{\text{name} : \text{entries}, \text{type} : \text{EReference}, \text{eType} : \text{Entry}, \text{unique} : \text{true}, \ldots\}$,
- $v_5 = \{\text{name} : \text{Entry}, \text{type} : \text{EClass}, \text{abstract} : \text{true}\}$.

Encoding Structure in N-grams. Referring to (Babur and Cleophas, 2017) we have basically two options for representing structure as features. We can either (1) ignore the model structure completely, using vertices as is, i.e. the unigram setting; or (2) encode structure in linear chunks, i.e. the n-gram (with $n > 1$) setting. In terms of the conceptual feature hierarchy, one can think of unigrams as corresponding to SimpleFeatures, while n-grams are aggregate features with multiple SimpleFeatures contained. Based on the underlying graph for a model, we can describe n-grams as n consecutively connected vertices. In contrast with (Babur and Cleophas, 2017), we also incorporate the edges in the n-grams as SimpleTypes. Some bigrams ($n = 2$) from Figure 2 would be:
N-gram Comparison. As n-grams consist of SimpleFeature vertices, we first define the extended vertex comparison to account for attributes with the following multiplicative vertex similarity formula:

\[vSim(n_1, n_2) = nSim(n_1, n_2) \times typeSim(n_1, n_2) \times eTypeSim(n_1, n_2) \times attrSim(n_1, n_2) \]

(1)

where \(nSim \) is the NLP-based similarity between the names, \(typeSim \) and \(eTypeSim \) between the domain types and eTypes of the AttributedNodes, and for attributes other than name, type and eType, attribute similarity being:

\[attrSim(n_1, n_2) = 1 - \frac{\# \text{ unmatched attributes}}{\text{total # attr. for types}} \]

(2)

The framework allows relaxing those categories (e.g. inserting a reducing multiplier of 0.5 for non-matching types). N-gram comparison is the semi-relaxed formula (Babur and Cleophas, 2017)), i.e. given n-grams \(p_1 \) and \(p_2 \) with \(2n - 1 \) elements (\(n \) vertices and \(n - 1 \) edges), the n-gram similarity is:

\[nSim(p_1, p_2) = \text{ctxMult}(p_1, p_2) \times \sum_{i=1}^{2n-1} vSim(v_1, v_2) \]

(3)

\[\text{ctxMult}(p_1, p_2) = \frac{1 + |\text{nonzero } vSim \text{ matches}|}{1 + (2n - 1)} \]

(4)

Weighting. SAMOS supports type-based and idf weighting for features. While the latter is to be investigated further in the future (e.g. for ordering of clones in a clone report), we exploit type-based weighting to reduce the representative importance of certain features. Features with more important types are given higher weights; for instance, matching EClasses should be favored against e.g. matching EParameters.

Distance Measurement. Originally SAMOS adopted a regular VSM approach: a choice of a distance measure (e.g. cosine and Manhattan) and calculation of the distance over the whole VSM. We have identified several shortcomings in the context of clone detection, and extended the distance measurement.

- Manhattan distance is an absolute measure and cosine is normalised but size-agnostic. Therefore we cannot use them directly for clone detection.

There are several measures in the literature (implemented in R) that fulfill the requirements of normalisation and size-sensitivity, such as Bray-Curtis and canberra (Deza and Deza, 2009).

- VSM assumes orthogonality of the features, and takes all columns into account for distance calculation. This is violated in our case where our features are often (partly) similar to many other features and hence not orthogonal. For clone detection, we limit the distance calculation to the union of originally contained features by the two entities, rather than all the features in the dataset.

For the reasons above, we have integrated a masked variant of Bray-Curtis distance (Equation 5) into SAMOS, extending the default distance function in the R package vegan. Given an \(N \) dimensional vector space, data points (e.g. model, EClass, etc. depending on the scope) of \(P \) consisting of features \(P_1, \ldots, P_m \) and \(Q \) consisting of \(Q_1, \ldots, Q_n \), \(p \) and \(q \) the corresponding vectors on the full vector space for \(P \) and \(Q \), the masked bray-curtis distance is over the vector subspace \(P \cup Q \) (size \(\leq m + n \)) as:

\[\text{bray}(P, Q) = \sum_{t} |P_t - Q_t| \]

5 MUTATION ANALYSIS

We have adopted a conceptual framework for validating our approach (Stephan and Cordy, 2014). The
framework suggests using mutation analysis to evaluate model clone detection techniques. In this section, we detail our assumptions, case design and goals. We first introduce a brief evaluation of MACH using the mutations (for UML class diagrams) and report its shortcomings. Finally we present the results of our techniques on the mutated dataset and discuss the potential strengths and weaknesses.

Case Design. First we make the simplifying assumption (for the scope of this paper) that we are interested in EClass clones in Ecore metamodels. Inspecting the Ecore meta-metamodel, we identified 36 mutations that we believe to represent possible and noteworthy atomic/small changes in an EClass. They contain addition, removal and changing of model elements, renaming and finally reorder, move and swap operations. Using a medium-sized base EClass consisting of 1 super type, 5 EAttributes, 2 EReferences and 1 EOperation in turn with 1 EParameter and 1 EException, we used the mutation framework, WODEL (Gómez-Abajo et al., 2016), where possible and 1 EException, we used the mutation framework, WODEL (Gómez-Abajo et al., 2016), where possible to automatically inject those mutations into the base metamodel. WODEL contains a DSL for specifying the mutations and the mutation workflow in a very convenient and maintainable way.

The mutations are mostly trivial operations of adding, removing, etc. We added three specific mutations involving element names: cosmetic renaming (such as lower vs. upper case, camel vs. snake case), adding a typo, and replacing with a synonym. We further added two regular and two corner cases of move and swap operations (last rows of Table 1) in order to demonstrate the approximate nature of information representation in our technique. The regular case for move involves simply moving a model element elsewhere. In contrast, the corner case for move involves moving a model element A contained in B into a distinct container B', with the condition that \(\text{vsim}(B, B') = 1 \) (same vertex similarities) - a change easily detectable using graph isomorphism but possibly not by approximate techniques such as ours. Swap mutations are designed in a similar manner.

Last but not the least, we manually replicated all the mutations on a comparable UML class diagram in order to evaluate MACH.

Brief Evaluation of MACH. Störrle has developed a variety of algorithms with different settings in the MQclone clone detector. However they are not entirely available, being integrated in a rather limited way into the MACH toolset. So we proceeded to analyse the output of MACH. We fed MACH all the mutated cases and observed what it calculated as their pairwise difference with respect to the base model. We noted down the (changes in the) absolute similarity values and identified several shortcomings of the tool. In our tests MACH seemed to:

- ignore types (e.g. of properties, parameters), modifiers, modifiers (e.g. final Class), cardinalities, exceptions,
- not handle Class renaming properly; i.e. not recognise the two classes as clones,
- not recognise changing of Class super type,
- not recognise all move/swap,
- not consistently handle typos and cosmetic changes in the element names; i.e. treat them as complete renaming,
- not support semantic relatedness of words, e.g. synonym.

Goals. Ideally, we wish to obtain zero distance for mutations leading to Type A clones (G1), and positive distance for mutations leading to higher level clones (G2). For the latter, we also wish to have the distance reasonably small (e.g. \(< 0.05 \) as a breaking point towards Type C) given that all the mutations in this section are atomic/small (G3), and match an intuitive assessment of distance, e.g. changing just a EParameter is less significant than changing an EAttribute (G4). A final desirable property is that bigger changes lead to higher distances than their smaller counterparts, e.g. distance for introducing a typo in the name is smaller than complete renaming; or changing the type smaller than removing the element altogether (G5).

Evaluation and Discussion of SAMOS. We have in turn applied our clone detection technique and report here the distance measure between each case and the base metamodel. We have used different feature schemes (unigrams and bigrams) using Bray-Curtis distance the optional scheme (raw/weighted). Table 1 gives a representative subset of the results.

In general, the results look promising, though not without certain errors and weaknesses for particular settings - most prominent errors are bolded in the table. G1 is not violated by any technique in the two cases with cosmetic changes and reordering. G2 is violated in a number of cases. Unigrams (not unexpectedly, as they ignore structural context) evaluate quite some mutations with zero distance. Furthermore move/swap mutations are mostly undetected by our technique. G3 is not uniformly satisfied but the results are generally acceptable given a relaxed threshold range of 0.05 – 0.10. While relatively large values for mutations involving EOperations don’t matter too much, considering that removing it is in fact removing all its content as well (e.g. EParameters). Arguably
Table 1: Distances to the base model for each mutant (rows) and different setting (columns).

<table>
<thead>
<tr>
<th>Mutation applied</th>
<th>Unigram</th>
<th>Bigram</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bray Raw</td>
<td>Bray Wght</td>
</tr>
<tr>
<td>addEClassSupertype</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>addEClassEAttribute</td>
<td>0.047</td>
<td>0.048</td>
</tr>
<tr>
<td>addEClassEOperation</td>
<td>0.089</td>
<td>0.039</td>
</tr>
<tr>
<td>changeEClassNameRandom</td>
<td>0.098</td>
<td>0.201</td>
</tr>
<tr>
<td>changeEClassSupertype</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>changeEAttributeType</td>
<td>0.072</td>
<td>0.073</td>
</tr>
<tr>
<td>changeEAttributeAttribute</td>
<td>0.013</td>
<td>0.013</td>
</tr>
<tr>
<td>changeEOperationNameRandom</td>
<td>0.107</td>
<td>0.066</td>
</tr>
<tr>
<td>removeEClassSuperType</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>removeEClassEAttribute</td>
<td>0.051</td>
<td>0.053</td>
</tr>
<tr>
<td>removeEClassEOperation</td>
<td>0.119</td>
<td>0.047</td>
</tr>
<tr>
<td>changeEAttributeNameCosmetic</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>changeEAttributeNameTypo</td>
<td>0.004</td>
<td>0.005</td>
</tr>
<tr>
<td>changeEAttributeNameSynonym</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>reorder element</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>move element</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>swap element</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>move into similar container</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>swap with similar container</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

The biggest issue, as bolded in the table, is with bigrams for renaming an EClass: due to the nature of feature extraction (i.e., bigrams), vertices with high number of outgoing edges (e.g., EClasses typically having many types of elements) are over-represented in the vector space. They are present in many features, hence any change leads to a larger distance in the vector space. G4 in turn is partly improved by applying weighted distances for each technique. Indeed, fine-tuning of the weighting (possibly with more advanced schemes) would further improve G3 (partly) and G4; nevertheless we find the results satisfactory given the scope of this work. Finally, G5 is relatively well achieved overall.

6 DISCUSSION

In this section we discuss several aspects of our approach and the techniques we developed.

Underlying Framework. We have built our clone detection technique on top of SAMOS, exploiting its capabilities such as NLP and statistical algorithms for free. The framework has allowed us easily extend it, e.g. in terms of extraction of new features, addition of new distance measures. This is one of the strengths of our approach, also considering recent developments within SAMOS such as support for distributed computing and more sophisticated NLP. Using R as the back-end enables us to further experiment with advanced statistical and data mining techniques. Moreover, SAMOS is in principle generic, as it can be applied to any graph-based model with a corresponding feature extraction implementation.

Accuracy. We have evaluated our technique with mutation analysis in order to assess the accuracy in terms of correctly yielding the expected distance between the mutated and base model. As given in Table 1, our technique with the different settings leads to varying degrees of accuracy; we believe to have achieved a good overall accuracy using bigrams. Note that some of the issues with the sensitivity can be remedied with more optimised or advanced weighting schemes for each setting. Qualitative case analysis based on mutations further allows us to pinpoint the weaknesses of our approach and improve it where applicable.

Other Practical Aspects. Several aspects other than accuracy are reported in the literature as im-
portant for applying model clone detection in practice (Deissenboeck et al., 2010; Stephan and Cordy, 2014). In this work, we have fixed scoping of EClass, thus do not run into the nested clones problem. This would be somewhat important for e.g. EPackage scope, but even more so for other types of models. Other aspects including clone ranking, reporting and inspection, visualisation are also left as future work.

Threats to Validity. A threat to validity due to the preliminary nature of this study is the limited evaluation on a synthetic dataset using a single mutation analysis approach. Further evaluation using chains of mutations which lead to Type C clones, and eventually using a real dataset is needed. It is at this phase not clear to us what the frequency of the various changes (i.e. mutations) is in reality, which directly contributes to the overall accuracy of our approach (cf. the weakness of bigrams for certain mutations). An evaluation on a real dataset, combined with additional comparative evaluation of existing model clone detectors would be necessary to properly assess the precision and more importantly our relative recall.

7 CONCLUSION AND FUTURE WORK

In this paper we present a novel model clone detection approach based on SAMOS using information retrieval and machine learning techniques. We have extended SAMOS with additional scoping, comparison schemes, customised distance measures and clustering algorithms in the context of metamodel clone detection. We have evaluated our approach using mutation analysis and identified the strengths and weaknesses of our approach in a case-based manner.

As future work, we plan to further extend SAMOS with additional features (e.g. n-grams with \(n > 2 \) and subtrees), customised, improved weighting schemes, distance measures and statistical algorithms. Another next step is to extend state-of-the-art model clone detectors such as Simone, ConQAT and MQclone for metamodel clone detection for evaluating those tools separately and comparatively with our approach for precision and relative recall.

REFERENCES

