
An Ontological Context Modeling Framework for Coping with the

Dynamic Contexts of Cyber-physical Systems

Jennifer Brings1, Marian Daun1, Constantin Hildebrandt2 and Sebastian Törsleff2
1paluno – The Ruhr Institute for Software Technology, University of Duisburg-Essen, Essen, Germany

2Automation Technology Institute, Helmut-Schmidt-University, Hamburg, Germany

Keywords: Cyber-physical Systems, Collaborative Systems, Context, Context Modeling, Dynamic Context.

Abstract: Cyber-physical systems are highly collaborative by nature. At runtime these systems collaborate with each

other to achieve goals that a single system could not achieve on its own. For example, autonomous vehicles

can dynamically form convoys at runtime to facilitate higher traffic throughput and a reduction in CO2

emissions. While the importance of context documentation and analysis in system development is well known,

current model-based engineering approaches struggle with the size and complexity of cyber-physical systems’

contexts. This is due to high variety and dynamicity of the contexts to be considered. For example, a convoy

to be formed at runtime may consist of different numbers of participating vehicles. Additionally, it may face

different neighboring, not partaking context systems (e.g., non-equipped vehicles, equipped but not

participating vehicles) and situations (e.g., speed limits, road construction sites, emergency vehicles). This

paper proposes a context ontology to cope with highly dynamic contexts of cyber-physical systems by

explicitly differentiating between not only the system and its context but also between the cyber-physical

system network the system participates in, as well as the system network’s context.

1 INTRODUCTION

Cyber-physical systems (CPS) are closely integrated

in their contexts. Not only by monitoring context

measurements by means of sensors and influencing

their context by means of actuators, but also with one

another by means of direct communication devices or

the future internet (Wolf, 2009). In doing so, cyber-

physical systems form collaborating system networks

to achieve common goals (Broy and Schmidt, 2014).

For example, a network of transport robots can

optimize costs and time used for transporting goods.

This might involve single systems deviating from

their local optima (e.g., taking a longer route) in order

to contribute to the global optimization goal (e.g.,

minimizing the total distance travelled of all transport

robots involved).

The context of a CPS is an important driver for

the functionality and behavior the system exhibits.

Furthermore, the existence of other context objects,

such as barriers, people, or the number and position

of production belts influences the actual behavior of

the system. Hence, context aspects need to be taken

into account during the engineering of cyber-physical

systems. For example, the context is explicitly

elicited during requirements engineering (Nuseibeh

and Easterbrook, 2000), it is considered during safety

analyses such as the FMEA (Stamatis, 2003), and the

systems’ architecture is designed to allow for context

awareness at runtime (Whittle et al., 2009).

Since model-based engineering can be seen as the

standard approach to cope with today’s challenges in

cyber-physical system development (Broy, 2013),

context models are heavily relied upon (Fouquet et

al., 2012). However, current approaches do not take

into account the two-sided nature of the context, when

it comes to modeling CPS networks. For CPS

networks, parts of the context behave like a system on

their own, namely the cyber-physical system under

development and other cyber-physical systems in its

context, which together form a system network to

achieve common goals, create emergent

functionality, and exhibit an aligned behavior. Hence,

the model-based documentation must not only

distinguish between the system and its context, but

furthermore, between the system and the system

network, as well as between the system network and

its context. It is important to note that the system, the

system network and their contexts are partly

overlapping. This must be explicitly taken into

396
Brings, J., Daun, M., Hildebrandt, C. and Törsleff, S.
An Ontological Context Modeling Framework for Coping with the Dynamic Contexts of Cyber-physical Systems.
DOI: 10.5220/0006603403960403
In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), pages 396-403
ISBN: 978-989-758-283-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

account when it comes, among others, to safety

analyses. For example, each CPS must prevent unsafe

behavior of the system network it is partaking in and

unsafe context conditions identified from a system

network perspective must be taken into account for

each single system as well.

In this paper, we contribute an ontological context

modeling framework for collaborating cyber-physical

systems. The framework explicitly differentiates

between the system under development, the system

network under consideration (that the system under

development belongs to) and their contexts.

Furthermore, overlaps and mutual relations are

identified and reflected in the modeling framework to

enable advanced model-based analysis approaches to

take advantage of this.

The paper is structured as follows. Section 2

briefly introduces the state of the art and previous

work the ontological context modeling framework

builds upon. Section 3 introduces the core principles

of the ontological context framework and the frame-

work itself. Finally, Section 4 concludes the paper.

2 RELATED WORK

In the software engineering field many approaches

have been suggested for using contextual information

as well as for explicitly documenting the system’s

context, which is especially important in

requirements engineering (Gause, 2005). To this end,

various approaches to document context information

in requirements models have been suggested. For

instance, goal-oriented approaches (e.g., (Yu, 1996;

Ali, Dalpiaz and Giorgini, 2010)), refine top-level

goals considering context knowledge elicited during

requirements engineering. By doing so, goal

fulfillment either depends on the system itself, on

subsystems, or on entities in the context, such as

external systems or human users. Common

requirements engineering approaches typically take

context information into account, but do so from the

perspective of a single system, not considering the

system network the system is part of or other systems

attached to the system network.

In component-based development (e.g., (Cechich,

Piattini and Vallecillo, 2003; Karsai et al., 2003)), a

system is refined across several layers of abstraction.

Every subsystem can be considered a system in a

shared context (i.e., the overall system), such

approaches assume that only one overall development

process is in place, which sequentially traverses the

emerging subsystem tree and does not consider

concurrent engineering processes. Ontology-based

context modeling approaches, which have been

proposed in the past (e.g., (Strang, Linnhoff-Popien

and Frank, 2003)), focus on the documentation of

context information of a single system under

development. These approaches mostly rely on state-

based behavior and do not take other types of context

information into account, like static-structural or

functional dependencies.

In order to document context information

explicitly, some approaches (e.g., (Bergh and Coninx,

2006; Dhaussy et al., 2009)) extend existing

modeling languages such as the languages of the

UML. Explicit documentation of context information

is a prerequisite for various quality assurance and

analysis approaches, such as model checking of

development artifacts (e.g., (Dhaussy et al., 2009)) as

well as impact analysis of context changes (e.g.,

(Alfaro and Henzinger, 2001)).

A more generic view on the meaning of context in

system development is given in context theory. For

example, in (Gong, 2005), the distinction is made

between context subject, i.e., the system, for which

the context is being considered, and context objects,

i.e., the entities that are within the context subject’s

context. By selecting the context subject, the scope is

clearly defined: In principle, everything that is part of

the context subject can be changed during

development, whereas context objects are beyond the

scope of development and cannot be changed.

Context theoretic approaches such as (Jackson, 1995;

Jin and Liu, 2006), place particular emphasis on the

distinction between the system, the system’s context,

and the effect of the system onto its context. In this

paper, we build on these approaches by extending

them with the distinction between system and system

network as well as their contexts and the resulting

implications of this extension.

In previous work, we introduced an ontology for

modeling the context of embedded systems (Daun,

Tenbergen, et al., 2016). Thereby, clearly

distinguishing between the context of knowledge

(Daun et al., 2014), which places emphasis on

identifying and documenting knowledge sources as

needed in requirements engineering, and the

operational context, which describes the context the

system will be operating in at runtime. In this paper,

we will focus on the operational context, for which

the ontology provides the basis for various automated

context analysis approaches (Daun et al., 2015) and

facilitates the concurrent engineering of interacting

systems. (Daun, Brings, et al., 2016). In this paper,

we extend this context ontology to account for

systems in the same system network and the

dynamicity of such system networks.

An Ontological Context Modeling Framework for Coping with the Dynamic Contexts of Cyber-physical Systems

397

3 CONTEXT FRAMEWORK

This chapter introduces the proposed context

modeling framework for cyber-physical system

networks. The framework is based on five principles:

(1) the separation between system and context, (2) the

consideration of different context subjects and their

overlapping contexts (3), the differentiation between

individual CPS and the CPS network, (4) the

differentiation between different types of context

objects, and (5) the dynamic nature of the context to

be considered. A detailed description of these

principles is given in Sections 3.1-3.5. Section 3.6

introduces the resulting context ontology.

3.1 Principle 1: Separation between
System and Context

In software engineering the dividing line between

system and context is traditionally drawn between

what can be changed and what cannot be changed

during development (e.g., (Nature Team, 1996)).

While the system can be changed as needed, the

context comprises all objects that are of relevance to

the system and its development, but cannot be

influenced during development and are thus seen as

given. For example, during the development of an

automotive traffic sign assistant, the object

recognition functionality can be implemented as

desired. The street signs to be recognized, however,

cannot be changed or influenced, but they do have an

impact on the object recognition functionality

implemented in the system.

The system and its context are separated by the

system boundary.

Figure 1 illustrates the relationship between the

system, its context and the irrelevant environment.

Everything within the system boundary is part of the

system and subject to the development process, while

everything outside is considered as given. Not

everything outside the system boundary, however, is

of relevance for the system and its development

process. A car’s engine, for example, is of no

relevance to the aforementioned traffic sign assistant

and thus not part of the traffic sign assistance’s

context but part of the irrelevant environment.

While the context also includes aspects that

mainly influence system development and not the

system’s runtime behavior (e.g., road traffic licensing

regulations), this paper focuses on the operational

context, i.e., the part of the context that the system

interacts with at runtime.

Context

System

System Boundary

Context Boundary
Irrelevant
Environment

Figure 1: Context.

3.2 Principle 2: Consideration of
Different Context Subjects and
Their Overlapping Contexts

To cope with the complexity of modern systems,

systems engineering frameworks utilize abstraction

layers that allow for decomposing systems into sub-

systems (e.g., (Böhm et al., 2016)). Figure 2

illustrates this in a simplified fashion for the traffic

sign assistant. On the second abstraction layer, the

system is decomposed into the three components

camera, electronic control unit (ECU), and user

interface. The ECU is further decomposed into an

object recognition component and a system

management component on the third abstraction

layer.

Traffic Sign
Assistant

Camera ECU User Interface

Camera

ECU

User Interface

Object
Recognition

System
Management

Abstraction Layer 1

Abstraction Layer 2

Abstraction Layer 3

Abstraction Layer 2

Figure 2: Decomposition of a Traffic Assistant.

From the traffic sign assistant’s point of view all

three components are part of the system. From the

ECU’s point of view, however, the camera and the

user interface are part of its context. Similarly, from

the camera’s point of view, the ECU and the user

interface are part of the camera’s context and both the

ECU and the camera are in the user interface’s

context. This relation between the different systems

and their context is illustrated in Figure 3. As can be

seen in Figure 3, the distinction between system and

context depends on the development subject and,

hence, must be seen as variable.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

398

< Context>
Camera

< Context>
ECU

< System>
User Interface

< Context>
Camera

< System>
ECU

< Context>
User Interface

< System>
Camera

< Context>
ECU

< Context>
User Interface

< Context>
Camera

< Context>
ECU

< System>
User Interface

< Context>
Camera

< System>
ECU

< Context>
User Interface

< System>
Camera

< Context>
ECU

< Context>
User Interface

< Context>
Camera

< Context>
ECU

< System>
User Interface

< Context>
Camera

< System>
ECU

< Context>
User Interface

< System>
Camera

< Context>
ECU

< Context>
User Interface

Figure 3: Exemplary mutual relationships between different CPS and their context objects.

For example, during the engineering of the traffic

assistant on a high-level of granularity all three

subsystems, i.e., ECU, camera and user interface,

must be considered as part of the system. In contrast,

on a more detailed level, the subsystems will be

engineered within different engineering paths. In

consequence, the user interface and camera must be

viewed as context when engineering the ECU; ECU

and user interface are part of the context of the

camera; and ECU and camera are context objects for

the user interface. In context theory, the system,

subsystem, function, software, or whatever the

context is defined for, is typically referred to as the

context subject.

3.3 Principle 3: Differentiation between
System and System Network

CPS form networks to achieve a common goal. For

instance, a network of transport robots can negotiate

an optimized strategy for transporting goods from A

to B. To this end, each robot in the network adjusts its

behavior accordingly, which may require it to select

a suboptimal route and load for itself. Figure 4 (1)

illustrates how a network of transport robots moves

goods from A to B.

Considering a system network of autonomous

transport robots as the context subject, the context

objects comprise goods to be transported, the goods’

current positions and destinations as well as obstacles

in the room. An important characteristic of system

networks that consist of CPS is that they are usually

not designed as a whole, but rather piece by piece, i.e.,

each system separately without explicitly defining all

possible system networks which it can be part of.

Therefore, it is reasonable for a single transport

robot (e.g., R2) to be considered as the context

subject. This, in contrast, leads to the other robots

being context objects. In other words, from the point

of view of a single robot the context comprises the

other robots within the system network as well as the

context objects that are outside the system network

(goods, obstacles etc.). Both points of view are

illustrated in Figure 4 (2) and Figure 4 (3)

respectively.

From the point of view of a single CPS, the

context consists of the system network as well as

other objects outside the system network. In the

transport robot example, there might not be the one

transport robot as context object but rather different

robots of different types. For instance, R2 and R3

might be of the same type, while the other six robots

are from four different manufacturers.

As can be seen for CPS networks, it can be

differentiated between the CPS and its context and the

system network and its context. Table 1 summarizes

the two different manifestations of context subjects

and context objects that are relevant to CPS.

Table 1: Different Definitions of Context Subject and

Context Objects for System Networks.

System network

perspective
CPS perspective

Context

subject
System network

CPS within a system

network

Context

objects

Relevant objects

outside the system

network

Other CPS in the

system network and

relevant objects

outside the system

network

Treating collaborative systems in the system

network as context objects, however, ignores the fact

that unlike context objects in the conventional sense,

these other systems often are not predefined at design

time. In fact, many system networks will consist only

in part of systems existent at design time.

3.4 Principle 4: Differentiation between
Collaborative Context Objects and
Non-Collaborative Context Objects

Systems collaborating in a system network

emergently create some kind of overall functionality

to achieve super goals that the individual systems

cannot achieve on their own. Hence, there is a

significant difference between context objects that

An Ontological Context Modeling Framework for Coping with the Dynamic Contexts of Cyber-physical Systems

399

(1)

CPS Network of

Transport Robots

(2)

CPS Network of

Transport Robots as

the Context Subject

(3)

A Single CPS

(Transport Robot) as

the Context Subject

(4)

Illustration of

Collaborative and

Non-Collaborative

Context Objects

(5)

Illustration of

Dynamicity (R9

changed from Non-

Collaborative

Context Object to

Collaborative

Context Object

Figure 4: Illustration of a System Network of Transport Robots.

R1 R2

R3

R6

R4

R5

R7

R8

A B

Production
Site

Robots of
different
vendors and
make

Legend

Context

Context Subject

R1 R2

R3

R6

R4

R5

R7

R8

A B

Context Context
Subject

R1 R2

R3

R6

R4

R5

R7

R8

A B

Context Context
Subject

R1 R2

R3

R6

R4

R5

R7

R8

A B
R9

Non-Collaborative
Context Object

Legend

Collaborative
Context Object

Context Context
Subject

R1 R2

R3

R6

R4

R5

R7

R8

A B

Non-Collaborative
Context Object

Legend

Collaborative
Context Object

R9

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

400

collaborate with the system under development (i.e.,

the context subject) to achieve such a super goal and

context objects that do not collaborate.

Therefore, there is a need to distinguish between

different context object classes. We choose to label

them as Collaborative Context Objects and Non-

Collaborative Context Objects. Figure 4 (4)

illustrates the separation of collaborative and non-

collaborative context objects for the transportation

robot example.

Collaborative and non-collaborative context

objects both belong to the relevant context. Since CPS

provide their functionalities to a system network, the

system network can achieve goals that a single system

would not be able to achieve on its own. Therefore,

objects that cooperate actively in achieving a goal

through providing their functionalities belong to the

collaborative context. For instance, the collaborative

context of robot R2 contains all CPS that R2

collaborates with in order to achieve a common goal,

i.e., transporting a good from A to B, optimized

regarding time and cost.

All objects in the collaborative context of a

system under development (i.e., the context subject)

are able to actively communicate certain information

(e.g., states, properties, parameters) about themselves

that are necessary for evaluating how to achieve this

goal. On the other hand, non-collaborative context

objects participate only passively in achieving the

system network’s goal. As long as a transported good

does not engage in a negotiation process with the

robots (e.g., negotiation of transportation price and

duration), it remains a non-collaborative context

object.

3.5 Principle 5: Dynamicity of CPS
Networks

CPS networks change at runtime (Broy, 2012).

Therefore, CPS that are part of such a network have

to cope with a dynamic context. Considering our

running example, new robots might be introduced to

the system network over time, or an individual robot

might receive an upgrade that enables it to carry

higher loads. In principle, whether a given context is

dynamic depends on the time-span considered,

respectively the observation horizon. Coming back to

the transport robots, robot R2 might be considered the

context subject. If the observation horizon is chosen

to be infinitely short, there will be no change in the

collaborative context as well as in the non-

collaborative context of robot R2. If instead the

observation horizon is chosen to be longer, for the

context subject R2, several changes are possible:

New objects may enter the relevant context. This

can be collaborative objects, e.g., a new robot is

introduced to the fleet (see Figure 4 (5)), or non-

collaborative objects, e.g., a new good has to be

transported. Similarly, context objects may leave the

context and become part of the irrelevant

environment. Again, these can be collaborative

context objects, e.g., a robot leaves the fleet because

it is not working profitably any more, or non-

collaborative context objects, e.g., a transported good

reached its final destination. Furthermore, objects

may change their context class, e.g., a transported

good is equipped with software that enables it to

participate in a price negotiation with the robots,

resulting in a change of the context objects class from

non-collaborative to collaborative object.

3.6 Context Ontology

The context ontology shown in Figure 5 is based on

the five principles introduced in sections 3.1-3.5 and

illustrates the different concepts and their

relationships. The environment is split into the

irrelevant environment and the context, which are

separated by the context boundary. The context itself

is comprised of various context objects (e.g., the

traffic sign, the precipitation) and separated from the

context subject (e.g., the traffic sign assistant) by the

subject boundary. The context subject can be a system

network, an individual system, a subsystem, software,

or hardware. The context ontology further

distinguishes between two types of context objects;

non-collaborative context objects (nCCO) and

collaborative context objects (CCO). The nCCOs do

not participate in a collaboration with the context

subject. This could be a traffic sign, which does not

communicate with the traffic sign assistant, but is

nevertheless part of the context. A CCO would be a

traffic light, which is able to communicate with the

context subject (i.e., the car’s traffic sign assistant) in

order to change from red to green when the car is

approaching. The dynamicity (Dynamic) of the

context objects relies on the chosen observation

horizon, which can be illustrated by two extremes.

Having an infinitesimal short observation horizon,

there would not be any change in any context object

at all. Having an infinite long observation horizon,

there can be many changes. All the described

concepts are generic and not tied to a specific domain.

As part of our future research we will develop

domain-specific extensions for these concepts.

An Ontological Context Modeling Framework for Coping with the Dynamic Contexts of Cyber-physical Systems

401

Figure 5: Context Ontology.

4 CONCLUSIONS

In this paper, we discussed the need to not only

document and analyze the context of a CPS under

development, but also the context of the collaborative

system network the individual CPS takes part in. To

this end, we presented a context ontology, which not

only distinguishes between system and context, but

also takes mutual relations between different CPS, the

differentiation between individual systems and system

network, the distinction between collaborative and

non-collaborative objects, as well as the dynamicity of

the context for collaborative CPS into account.

First evaluation results in industry are promising.

However, future work will have to deal with a thorough

investigation of the proposed methodological context

framework. Furthermore, future work will deal with

the instantiation of the context modeling framework

for specific purposes, such as behavioral modeling,

documenting the logical architecture of CPS networks,

applying model verification techniques.

ACKNOWLEDGEMENTS

This research has partly been funded by the German

federal ministry for education and research under

grant no. 01IS16043U and grant no. 01IS16043V.

REFERENCES

Alfaro, L. de and Henzinger, T. A. (2001) ‘Interface

automata’, in Tjoa, A. M. and Gruhn, V. (eds)

Proceedings of the 8th European Software Engineering

Conference held jointly with 9th ACM SIGSOFT

International Symposium on Foundations of Software

Engineering 2001, Vienna, Austria, September 10-14,

2001. ACM, pp. 109–120. doi: 10.1145/503209. 503226.

Ali, R., Dalpiaz, F. and Giorgini, P. (2010) ‘A goal-based

framework for contextual requirements modeling and

analysis’, Requirements Engineering, 15(4), pp. 439–

458. doi: 10.1007/s00766-010-0110-z.

Bergh, J. V. den and Coninx, K. (2006) ‘CUP 2.0: High-

Level Modeling of Context-Sensitive Interactive

Applications’, in Nierstrasz, O. et al. (eds) Model

Driven Engineering Languages and Systems. Springer

Berlin Heidelberg (Lecture Notes in Computer

Science), pp. 140–154. doi: 10.1007/11880240_11.

Böhm, W. et al. (2016) ‘SPES XT Modeling Framework’,

in Pohl, K. et al. (eds) Advanced Model-Based

Engineering of Embedded Systems. Springer

International Publishing, pp. 29–42. doi: 10.1007/978-

3-319-48003-9_3.

Broy, M. (2012) ‘Engineering Cyber-Physical Systems:

Challenges and Foundations’, in Aiguier, M. et al. (eds)

Complex Systems Design & Management, Proceedings

of the Third International Conference on Complex

Systems Design & Management CSD&M 2012, Paris,

France, December 12-14, 2012. Springer, pp. 1–13.

doi: 10.1007/978-3-642-34404-6_1.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

402

Broy, M. (2013) ‘Challenges in modeling cyber-physical

systems’, in Abdelzaher, T. F., Römer, K., and

Rajkumar, R. (eds) The 12th International Conference

on Information Processing in Sensor Networks (co-

located with CPS Week 2013), IPSN 2013,

Philadelphia, PA, USA, April 8-11, 2013. ACM, pp. 5–

6. doi: 10.1145/2461381.2461385.

Broy, M. and Schmidt, A. (2014) ‘Challenges in

Engineering Cyber-Physical Systems’, Computer,

47(2), pp. 70–72. doi: 10.1109/MC.2014.30.

Cechich, A., Piattini, M. and Vallecillo, A. (2003)

‘Assessing Component-Based Systems’, in

Component-Based Software Quality. Springer Berlin

Heidelberg (Lecture Notes in Computer Science, 2693),

pp. 1–20. doi: 10.1007/978-3-540-45064-1_1.

Daun, M. et al. (2014) ‘On the Model-based Documenta-

tion of Knowledge Sources in the Engineering of

Embedded Systems’, in Schmid, K. et al. (eds)

Gemeinsamer Tagungsband der Workshops der

Tagung Software Engineering 2014, 25.-26. Februar

2014 in Kiel, Deutschland. CEUR-WS.org (CEUR

Workshop Proceedings), pp. 67–76.

Daun, M. et al. (2015) ‘Documenting Assumptions About

the Operational Context of Long-Living Collaborative

Embedded Systems’, in Zimmermann, W. et al. (eds)

Gemeinsamer Tagungsband der Workshops der

Tagung Software Engineering 2015, Dresden,

Germany, 17.-18. März 2015. CEUR-WS.org (CEUR

Workshop Proceedings), pp. 115–117.

Daun, M., Brings, J., et al. (2016) ‘Fostering concurrent

engineering of cyber-physical systems a proposal for an

ontological context framework’, in 2016 3rd

International Workshop on Emerging Ideas and Trends

in Engineering of Cyber-Physical Systems (EITEC).

2016 3rd International Workshop on Emerging Ideas

and Trends in Engineering of Cyber-Physical Systems

(EITEC), pp. 5–10. doi: 10.1109/EITEC.2016.

7503689.

Daun, M., Tenbergen, B., et al. (2016) ‘SPES XT Context

Modeling Framework’, in Pohl, K. et al. (eds)

Advanced Model-Based Engineering of Embedded

Systems. Springer International Publishing, pp. 43–57.

doi: 10.1007/978-3-319-48003-9_4.

Dhaussy, P. et al. (2009) ‘Evaluating Context Descriptions

and Property Definition Patterns for Software Formal

Validation’, in Schürr, A. and Selic, B. (eds) Model

Driven Engineering Languages and Systems. Springer

Berlin Heidelberg (Lecture Notes in Computer Science,

5795), pp. 438–452. doi: 10.1007/978-3-642-04425-

0_34.

Fouquet, F. et al. (2012) ‘A Dynamic Component Model

for Cyber Physical Systems’, in Proceedings of the 15th

ACM SIGSOFT Symposium on Component Based

Software Engineering. New York, NY, USA: ACM

(CBSE ’12), pp. 135–144. doi: 10.1145/2304736.

2304759.

Gause, D. C. (2005) ‘Why context matters - and what can

we do about it?’, IEEE Software, 22(5), pp. 13–15. doi:

10.1109/MS.2005.143.

Gong, L. (2005) ‘Contextual modeling and applications’, in

2005 IEEE International Conference on Systems, Man

and Cybernetics. 2005 IEEE International Conference

on Systems, Man and Cybernetics, p. 381–386 Vol. 1.

doi: 10.1109/ICSMC.2005.1571176.

Jackson, M. (1995) ‘The World and the Machine’, in

Proceedings of the 17th International Conference on

Software Engineering. New York, NY, USA: ACM

(ICSE ’95), pp. 283–292. doi: 10.1145/225014.225041.

Jin, Z. and Liu, L. (2006) ‘Towards Automatic Problem

Decomposition: An Ontology-based Approach’, in

Proceedings of the 2006 International Workshop on

Advances and Applications of Problem Frames. New

York, NY, USA: ACM (IWAAPF ’06), pp. 41–48. doi:

10.1145/1138670.1138678.

Karsai, G. et al. (2003) ‘Model-integrated development of

embedded software’, Proceedings of the IEEE, 91(1),

pp. 145–164. doi: 10.1109/JPROC.2002.805824.

Nature Team (1996) ‘Defining visions in context: Models,

processes and tools for requirements engineering’,

Information Systems, 21(6), pp. 515–547. doi:

10.1016/0306-4379(96)00026-9.

Nuseibeh, B. and Easterbrook, S. (2000) ‘Requirements

Engineering: A Roadmap’, in Proceedings of the

Conference on The Future of Software Engineering.

New York, NY, USA: ACM (ICSE ’00), pp. 35–46.

doi: 10.1145/336512.336523.

Stamatis, D. H. (2003) Failure Mode and Effect Analysis:

Fmea from Theory to Execution. 2 Rev Exp.

Milwaukee, Wisc: American Society for Quality Press.

Strang, T., Linnhoff-Popien, C. and Frank, K. (2003)

‘CoOL: A Context Ontology Language to Enable

Contextual Interoperability’, in Stefani, J.-B., Demeure,

I., and Hagimont, D. (eds) Distributed Applications and

Interoperable Systems. Springer Berlin Heidelberg

(Lecture Notes in Computer Science), pp. 236–247.

doi: 10.1007/978-3-540-40010-3_21.

Whittle, J. et al. (2009) ‘RELAX: Incorporating

Uncertainty into the Specification of Self-Adaptive

Systems’, in 2009 17th IEEE International

Requirements Engineering Conference. 2009 17th

IEEE International Requirements Engineering

Conference, pp. 79–88. doi: 10.1109/RE.2009.36.

Wolf, W. (2009) ‘Cyber-physical Systems’, Computer,

42(3), pp. 88–89. doi: 10.1109/MC.2009.81.

Yu, E. S.-K. (1996) Modelling Strategic Relationships for

Process Reengineering. University of Toronto.

An Ontological Context Modeling Framework for Coping with the Dynamic Contexts of Cyber-physical Systems

403

