
A Novel Tool for Detecting Indirect Normative Conflicts in Multi-agent
Systems

Jéssica Soares dos Santos1 and Viviane Torres da Silva2

1Computer Science Department, Universidade Federal Fluminense, Niterói, Brazil
2IBM Research (on leave from Universidade Federal Fluminense), Rio de Janeiro, Brazil

Keywords: Multi-agent Systems, Norms, Conflict Detection, Ontology, WordNet.

Abstract: Norms are usually applied in Multi-Agent Systems to regulate the behavior of software agents and maintain
social order. Those systems can be regulated by multiple norms and require a mechanism to verify whether
the set of norms is conflict-free or not. The detection of indirect normative conflicts is not a trivial task since
they only can be identified when the detection mechanism is able to infer that different elements that compose
two norms are related in some way. In this research, we propose a mechanism to detect normative conflicts
by combining two different approaches. The former uses information from a domain ontology that stores
relationships that are exclusive of the MAS. The latter uses information from a lexical database called WordNet
that stores relationships among concepts of the real world. This research results in the implementation of a
tool with a robust mechanism for normative conflict detection that can be used during the design of a MAS.

1 INTRODUCTION

In Multi-agent Systems (MAS), norms are being used
in order to control and restrict the software agents be-
havior. A way of regulation is needed in those sy-
stems to avoid the occurrence of undesirable actions
since software agents are autonomous entities that can
be independently designed. When MAS are gover-
ned by multiple norms, it is essential the existence
of a mechanism to verify whether such norms contra-
dict each other or not. When there is a contradiction
between two norms addressed to the same agent of
a MAS we say that there is a normative conflict be-
tween the norms. In such a case, the agent cannot
comply with both norms simultaneously without vio-
lating one of them. There are two kinds of normative
conflicts known in the literature, as follows: (i) di-
rect conflicts: they are conflicts that involve norms ad-
dressed to the same elements but that have contradic-
tory or opposite modalities, i.e., a prohibition versus
an obligation or permission regulating the same beha-
vior; and (ii) indirect conflicts: they are conflicts that
involve norms that are addressed to different but rela-
ted elements. Direct conflicts can be easily detected
through a direct analysis of the norm elements. On the
other hand, it is a challenge to detect indirect conflicts
since the conflicting norms are addressed to different
elements and the conflict can only be detected when

relationships among the norm elements are identified.
The detection of indirect conflicts among norms is a
topic that is being widely studied in MAS. However,
the detection processes of all approaches that we have
surveyed in the literature are only possible when the
application designer specifies relationships among the
elements that compose the norms of the system in a
document or an axiom, for instance (see Section 2). A
way of detecting indirect conflicts by using the lexi-
cal database WordNet (Miller, 1995) was described in
(Santos and Silva, 2016). The WordNet stores words
and semantic relationships among them, for instance,
the words “start” and “stop” are verbs that are related
in WordNet because they denote opposite actions in
the real world. In this example, such a relationship
can be used to detect indirect conflicts between two
norms where one obliges the agent to start and the
other obliges the same agent to stop. Using the Word-
Net, the application designer does not need to worry
about specifying relationships that are not specific of
the MAS (domain-independent relationships). Addi-
tionally, another advantage is that norms of a MAS
can be defined by different designers and WordNet
can be useful to unify the syntax of the norms, as syn-
onymous words are stored together in WordNet. Ho-
wever, a MAS may need to consider specific relati-
onships, i.e., relationships that do not exist in the real
world but exist in the MAS. For instance, relations-

70
Santos, J. and Silva, V.
A Novel Tool for Detecting Indirect Normative Conflicts in Multi-agent Systems.
DOI: 10.5220/0006598700700079
In Proceedings of the 10th International Conference on Agents and Artificial Intelligence (ICAART 2018) - Volume 1, pages 70-79
ISBN: 978-989-758-275-2
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

hips that specify that a given software agent inhabits
a given environment of the MAS. Those relationships
cannot be captured only by using the WordNet. For
this reason, in this paper, we present a novel mecha-
nism that combines an approach of conflict detection
that uses the WordNet with an approach that uses an
ontology to identify domain dependent relationships
and detect indirect conflicts among norms of a MAS.
By using this mechanism, the application designer
only needs to specify in a domain ontology relati-
onships that are exclusive of the given MAS. The re-
mainder of this paper is organized as follows: Section
2 presents other approaches that deal with conflicts
among norms in MAS. Section 3 presents all back-
ground information needed to the understanding of
our research. Section 4 describes our tool and the
steps performed by the conflict detection mechanism.
Section 5 presents a case study in order to demon-
strate the execution of our mechanism. In Section 6,
we present our conclusions, highlight limitations and
point out suggestions for future work.

2 RELATED WORK

There are many approaches in the literature that pro-
pose a means to detect conflicts among norms of a
MAS. Most of them can detect direct conflicts (Neto;
Silva; Lucena, 2012), (Neto; Silva; Lucena, 2013),
(Gaertner et al., 2007), (Vasconcelos et al., 2012)
and others can also detect some kinds of indirect
conflicts (Şensoy, et al., 2012), (Aphale; Norman;
Şensoy, 2013), (Kollingbaum et al., 2007), (Vascon-
celos; Kollingbaum; Norman, 2009), (Zahn, 2015),
(Fenech; Pace; Schneider, 2008), (Giannikis and Das-
kalopulu, 2011). The strategies of detection of con-
flicts can be classified according to when the strategy
is applied. The detection process can occur at de-
sign time or at runtime. Design time strategies (Fe-
nech; Pace; Schneider, 2008), (Şensoy, et al., 2012),
(Aphale; Norman; Şensoy, 2013), (Zahn, 2015) de-
tect conflicts during the design/specification phase of
the MAS, that is, before the execution of the MAS.
In this case, normative conflicts are detected before
they occur and the system designer can verify if the
set of norms of a MAS is conflict-free. A disadvan-
tage of adopting design time strategies is that some
conflicts only can be detected during the execution of
the system (conflicts that depend on the execution or-
der of runtime events). On the other hand, runtime
strategies (Kollingbaum et al., 2007), (Vasconcelos;
Kollingbaum; Norman, 2009), (Giannikis and Daska-
lopulu, 2011) detect conflicts during the execution of
the MAS. Usually, when an approach uses a runtime

detection strategy, it also presents a strategy to resolve
conflicts. A disadvantage of runtime strategies is that
they can be computationally expensive and it can im-
pact on the performance of the MAS.

Most approaches that can detect indirect norma-
tive conflicts consider relationships among actions
to do their analysis. The researches presented in
(Şensoy, et al., 2012), (Aphale; Norman; Şensoy,
2013), (Kollingbaum et al., 2007) and in (Vasconce-
los; Kollingbaum; Norman, 2009) analyze the side-
effects of the performance of the actions in order to
detect indirect conflicts. The work in (Vasconcelos;
Kollingbaum; Norman, 2009) and the approach des-
cribed in (Zahn, 2015) verify if actions are related by
a composition relationship in order to detect conflicts.
The researches in (Fenech; Pace; Schneider, 2008),
(Giannikis and Daskalopulu, 2011) and (Zahn, 2015)
take into account a relationship of orthogonality bet-
ween actions, which relate actions that cannot be per-
formed at same time. The work in (Zahn, 2015) also
considers hierarchy among entities, and relationships
that relate an entity to the environment that it inhabits,
or an entity to the role it plays, for instance.

Our research differs from the others because it can
detect indirect conflicts that occur due to relations-
hips that were not defined by the application designer,
and in addition of considering all relationships among
actions, entities and contexts defined by (Zahn, 2015),
we also consider other relationships that are not con-
sidered by other approaches, such as, synonymy and
antonymy as detailed in Section 3.

We present a deeper discussion about techniques
of detection and resolution of normative conflicts in
MAS in a previous work (Santos et al., 2017).

3 BACKGROUND

In this section, we present the essential aspects of our
proposal. First, we present the norm definition adop-
ted. The norm definition is an important factor, since
all kinds of conflicts that can be detected depend on
the norm expressivity, i.e., the elements that a norm
can represent. After that, we list the relationships that
the mechanism to detect conflicts will investigate be-
tween the elements of the norms. Our research com-
bines two different approaches of conflict detection
whose relationships are listed separately.

3.1 Norm Definition

We assume that a norm obliges, permits or prohibits
an entity to perform an action that can be applied to
a specific object. For instance, a norm can say that

A Novel Tool for Detecting Indirect Normative Conflicts in Multi-agent Systems

71

an agent is obliged to drive a car, where drive is the
action and car is the object. The object is an optional
element of our norm definition, i.e., a norm can regu-
late an action that is not associated with an object.

Definition: A norm is a tuple in the form

n = 〈id,deoC,c,e,act(ob j),ac,dc〉
where id is the norm identifier; deoC is the deon-

tic concept that determines the modality of the norm
deoC ∈ {obligation, permission, prohibition}; c ∈ C
is the context where the norm is defined (it can be an
organization o ∈ O or an environment env ∈ Env); e ∈
E is the entity being regulated by the norm. An entity
e may be an agent a ∈ A, an organization o ∈ Org or
a role r ∈ R; act ∈ Act is the action being regulated;
obj ∈ Obj is the object associated with the action. The
object is an optional field; and ac ∈ Cd and dc ∈ Cd
are dates that, respectively, activate and deactivate the
norm. The symbol “ ” can be used to determine that
a norm regulates all entities of a specific context.

3.2 Domain Ontology Relationships

The mechanism proposed to detect conflicts is able to
receive an ontology as input, specifying the relations-
hips of the application domain. The relationships that
can be specified in the ontology by the application de-
signer are listed below, as follows:

Inhabit: it relates an entity to the environment
that it inhabits. This relationship indicates that if a
norm regulates an environment, the norm also regula-
tes the entities that inhabit such an environment.

Play: it relates an entity to the roles it can assume.
This relationship indicates that if a norm regulates a
role, the norm also regulates the entities that play such
a role.

Ownership: it defines the roles that belong to a
given organization. This relationship indicates that if
a norm regulates an organization, the norm also regu-
lates the roles that belong to the organization.

Hierarchy: it defines that an element is super ele-
ment of another one. This relationship indicates that
if there is a norm regulating a super context/entity, the
norm also regulates their sub contexts/entities.

Refinement: it defines that an action is the speci-
alization of another one.

Composition: it defines that an action (called
whole action) is composed of other actions (called
part actions).

Orthogonality: it defines actions that cannot be
performed at the same time by the same entity or re-
lated entities.

Dependency: it determines that an action (called
client action) is a precondition to the performance of
another one (called dependent action).

3.3 WordNet Relationships

Our approach uses the WordNet database to find re-
lationships between contexts, entities, actions and ob-
jects (associated with actions).

Synonymy: words that denote the same concept
are grouped in a same set (called synset) in the Word-
Net and are related by the relationship Synonymy. We
map the contexts described in the norms to nouns and
verify if they are related through the relationship Syn-
onymy. For instance, if there is a norm whose context
is United States of America and other one whose con-
text is USA, the algorithm will conclude that both con-
texts are equivalents and that both norms are applied
to the same context. Similarly, by using the relations-
hip Synonymy we can infer that two norms that are, in
principle, addressed to different entities, in fact, refer
to the same entity. For instance, physician and doc-
tor are nouns that denote a licensed medical practiti-
oner. We also use the relationship Synonymy to map
the actions to verbs and objects to nouns, and identify
that the actions/objects of two norms are equivalent.
For instance, the actions to collaborate and to coope-
rate are related by the relationship Synonymy.

Specialization: it is described in the WordNet as
“Hyponymy/Hypernymy” and relate a noun that deno-
tes an element to its respective sub-elements contexts
and super-contexts. For instance, the context hospital
is a sub context of medical institution, since a hospi-
tal is a medical institution. Similarly, this relationship
can be used to detect that a sub-entity is related to a
super-entity. When a norm is applied to a super-entity,
such a norm is propagated to its sub-entities. For in-
stance, if a norm is applied to the role doctor, suppo-
sing that there is the role angiologist in the domain,
the norm also is applied to all entities that are playing
the role angiologist. We also use this relationship to
detect relationships among objects. For instance, the
object train is a specialization of the object public
transport, because a train is a kind of public trans-
port. The relationship Specialization among verbs is
defined as “Troponymy/Hypernymy” in the WordNet
and is used to identify that a sub-action is related to a
super-action. For instance, in the WordNet the verbs
to move and to walk are related by this relationship
since to walk is a way of to move.

Part-Whole: it is described in the WordNet as
“Meronymy/Holonymy” and relates an element that
denotes a part to an element that denotes a whole.
Usually, this relationship is used to relate geographic
areas in the WordNet. For instance, the context USA
is part of the context North America. Similarly, the
intensive care unit is part of the hospital and sacristy
is a part of church. This relationship can be app-

ICAART 2018 - 10th International Conference on Agents and Artificial Intelligence

72

lied to detect related objects, for instance, the objects
window and car are related by the relationship Part-
Whole because a window is part of a car.

Entailment: it relates an action that entails anot-
her one. For instance, when someone buy something
it must pay for it. Then, the verbs to buy and to pay
are related in the WordNet by the relationship Entail-
ment.

Antonymy: it relates an action to its opposite. For
instance, to move and to stop are verbs related in the
WordNet by the relationship Antonymy because they
denote opposite actions.

4 CONFLICT CHECKER TOOL

In this section, we describe how our proposal of con-
flict checker1 was implemented. Our tool was deve-
loped using Java programming language and NetBe-
ans IDE 8.0 integrated with the OWL-API (Horridge
and Bechhofer, 2011), which is the API that we use
to read an OWL ontology. The tool uses the JWNL
library (Walenz and Didion, 2011) to perform an off-
line searching in the WordNet. Our algorithm recei-
ves as input a domain ontology that describes dom-
ain elements (contexts, entities, actions, objects), the
set of norms and, optionally, domain-dependent rela-
tionships. After that, it combines two approaches of
conflict detection and is divided into two steps, as fol-
lows:

1. Detection of domain-dependent conflicts by using
relationships described in the domain ontology
(Domain Conflict Checker);

2. Detection of domain-independent conflicts by
using relationships described in the WordNet
(WordNet Conflict Checker).

Both approaches are divided into the following
sub-steps:

a. Propagation of norms according to the relations-
hips;

b. Grouping norms in sets according to their simila-
rity;

c. Verification of time intersection between each pair
of norms belonging to the same set;

d. Application of rules to identify conflict patterns;

After receiving the domain ontology describing
the relationships, entities, contexts, actions, objects
and the norms considered by the MAS, the algorithm
performs a propagation of norms. During propaga-
tion, norms addressed to general entities and contexts

1goo.gl/7TmYPX

Figure 1: Example of norm propagation.

are addressed to specific entities and contexts of the
domain (sub-step a). For instance, let us consider that
there are two agents called agent1 and agent2 that are
playing the role physician in the MAS (relationship
play). Then, if the application designer specifies a
norm n1 that is addressed to the role physician, the
propagation process will create two new norms n1.1
and n1.2 that will be composed of the same elements
of n1 but will be addressed to the agents agent1 and
agent2 (see Figure 1). However, the propagation of
norms according to domain-dependent relationships
can generate inconsistent norms if it contradicts other
relationships defined in the domain ontology. When
it occurs, such norms must be discarded. The rules to
discard inconsistent norms are described in Table 1.
Since the propagation of contexts and entities can ge-
nerate multiple norms, to reduce the number of com-
parisons needed, norms that have the same entity and
context are grouped in the same group (sub-step b).
For instance, suppose that exists a set of norms: n3,
n4, n5, n6, n7 and n8. The norms n3, n6 and n8 are
associated with the context Brazil and regulate the en-
tity agent3; the norm n5 is associated with the con-
text Argentina and regulates the entity agent4; and
the norms n4 and n7 are addressed to the agent5 and
to the context USA and United States of America, re-
spectively. Note that the contexts USA and United
States of America are synonyms. Then, in this exam-
ple, the sub-step of grouping norms will create three
sets of norms (see Figure 2) and only norms belonging
to a same set will be compared in the next sub-step.
Only norms addressed to the same (or equivalent) en-
tities and applied to the same (or equivalent) contexts

Figure 2: Example of grouping norms according to their
similarity.

A Novel Tool for Detecting Indirect Normative Conflicts in Multi-agent Systems

73

Table 1: Rules to discard inconsistent norms generated by
the propagation process.

Kind of
propagation Discard rule

Hierarchy
among con-
texts that are
environments

The entity of the original norm is
an organization/agent and is not de-
fined in the domain ontology that
such entity inhabits the environ-
ment of the propagated norm (inha-
bit)

Hierarchy
among con-
texts that are
organizations

(i) the entity of the original norm is
an organization that is not a suborg-
anization (hierarchy) of the context
of the propagated norm and is not
the context of the propagated norm
(ii) the entity of the original norm is
a role that is not related to the or-
ganization that is the context of the
propagated norm (ownership)

Inhabit bet-
ween contexts
that are envi-
ronments and
contexts
that are orga-
nizations

(i) the entity of the original norm is
an organization that is not a suborg-
anization (hierarchy) of the context
of the propagated norm and is not
equal to the context of the propaga-
ted norm
(ii) the entity of the original norm
is a role that is not related (owners-
hip) to the context of the propagated
norm (that is an organization)

Inhabit bet-
ween contexts
that are envi-
ronments and
entities
that are orga-
nizations

The entity of the propagated norm
is not a suborganization (hierarchy)
of the entity of the original norm

can conflict. Next, for each pair of norms of a same
group, the algorithm verifies if there is an intersection
between the activation and deactivation conditions of
the given two norms (sub-step c) and, if so, the al-
gorithm analyzes the actions, objects and the deontic
concepts of the norms in order to verify if the pair of
norms is conflicting (sub-step d). The norms that were
propagated and the conflicts detected are passed to
the second step as an input parameter. The algorithm
performs norm propagation considering relationships
described in the WordNet (sub-step a). Norms are
grouped together in sets when they are addressed to
the same or to a synonym entities and contexts (sub-
step b). The algorithm verifies if there is a time in-
tersection to each pair of norms of the same set (sub-
step c). The algorithm applies the conflict rules to
detect conflicting patterns considering the relations-
hips of WordNet (sub-step d). To conclude that two
norms are in conflict, the actions defined in the norms
must be analyzed with their objects (when the action

involves objects). The objects of norms are mapped to
WordNet nouns and their relationships are analyzed.
Finally, the algorithm exhibits all conflicts detected
and the domain-dependent and domain-independent
relationships that were identified. Note that in Section
5, we exhibit some conflicting patterns, that is, pat-
terns that indicate that two norms cannot be adopted
at the same time and for this reason are in conflict.
The complete list of conflicting patterns that have
been defined involving domain-independent/domain-
dependent relationships are described in (Santos and
Silva, 2016) and (Zahn, 2015), respectively.

Figure 3 illustrates the graphical interface of the
conflict checker tool. The button “Upload” is used
to select an OWL ontology. The button “Execute”
performs the detection process. The field “Onto-
logy Description” exhibits the information described
in the ontology received as input, that is, norms, con-
texts, entities, actions, objects and relationships of the
domain application described by the application de-
signer. The field “Domain Conflict Checker” exhi-
bits the propagations due to domain-dependent rela-
tionships, the pairs of norms compared and indicates
whether each pair is conflicting or not and the rea-
son. Similarly, the field “WordNet Conflict Checker”
exhibits the propagations due to domain-independent
relationships, exhibits the pairs of norms compared
and indicates the reason of conflict. The field “Con-
clusion” groups information from the fields “Domain
Conflict Checker” and “WordNet Conflict Checker”
and exhibits all conflicting patterns found to each pair
of norms compared. The “Reset” button cleans all in-
formation exhibited on the screen to be able to select a
new ontology and perform another detection process.

Figure 3: GUI of the Conflict Checker.

ICAART 2018 - 10th International Conference on Agents and Artificial Intelligence

74

5 CASE STUDY

In this section, we present a case study to illustrate the
process of conflict detection. Our tool will use norms
of an e-commerce scenario.

5.1 Definition of the Case Study

The type of e-commerce contract of this case study
is an agreement involving two parties called contrac-
tor and contracted, where the contracted provides a
service of management and availability of a virtual
shop and the contractor is the entity that has interest
in acquiring such a service, that is, it has an interest
in making its products available for sale on the In-
ternet. The selected contract is a default agreement
that defines the basic conditions for the establishment
of an agreement between the contracted and any con-
tractor, where both inhabit the context of USA. In the
following case study, the deontic concepts “obliga-
tion”, “permission” and “prohibition” are represented
as “O”, “P”, and “F”, respectively. Since the selected
contract has many norms, we have selected only a few
to demonstrate the process of conflict detection in a
simplified way, as follows:

1) The contractor is prohibited from being una-
ware of any part of the contract

〈N1,F,USA,contractor,unaware(contract), , 〉
2) The contractor is obliged to agree to the con-

tract
〈N2,O,USA,contractor,agree(contract), , 〉
3) The contractor cannot reproduce the tools pro-

vided by the contracted. Such tools are software pro-
grams of the virtual shop management

〈N3,F,USA,contractor,reproduce(tool), , 〉
4) The contractor also cannot market the tools

made available by the contracted
〈N4,F,USA,contractor,market(tool), , 〉
5) The contractor cannot send e-mails to users of

the virtual shop
〈N5,F,USA,contractor,send(email), , 〉
6) The contractor must purchase the software to

be installed in the virtual shop environment
〈N6,O,USA,contractor, purchase(so f tware), , 〉
7) The contractor is obliged to deliver the products

sold in the website
〈N7,O,USA,contractor,deliver(product), , 〉
8) The contractor is prohibited to access servers of

the contracted
〈N8,F,USA,contractor,access(server), , 〉
9) The contracted may exclude products from the

virtual shop, for instance, when it considers that the
sale of them is improper

〈N9,P,USA,contracted,exclude(product), , 〉

10) The contracted may change the contract
〈N10,P,USA,contracted,change(contract), , 〉
11) The contractor is obliged to include a freight

to the sales
〈N11,O,USA,contractor, include(f reight), , 〉
In order to demonstrate the operation of our pro-

posal for the detection of conflicts, we will consider
that there is a contractor party called Company 1 that
has an interest in using the services of the contrac-
ted party and that also has preconditions in relation
to the aforementioned agreement with the contracted
party. Therefore, our conflict resolution consists in
analyzing the norms of the default contract defined by
the contracted party together with the specific norms
of a given contractor in order to identify inconsisten-
ces. Let us assume that Company 1 has the following
norms in relation to the default contract established
by the contracted:

12) Company 1 may be unaware of clauses of the
contract

〈N12,P,USA,Company 1,unaware(clause), , 〉
13) Company 1 may disagree with the contract

clauses
〈N13,P,USA,Company 1,disagree(clause), , 〉
14) Company 1 may copy tools from the contrac-

ted
〈N14,P,USA,Company 1,copy(tool), , 〉
15) Company 1 may login on computers from

contracted
〈N15,P,USA,Company 1, login(computer), , 〉
16) Company 1 may exclude the freight of pur-

chases made in California during the month of De-
cember 2017

〈N16,P,Cali f ornia,Company 1,exclude(f reight),
12/01/2017 00:00:00, 12/31/2017 00:00:00〉

17) The contracted cannot change the contract
〈N17,F,USA,contracted,change(contract), , 〉
18) Company 1 may send spam, for instance, to

promote the sale of products or other services
〈N18,F,USA,Company 1,send(spam), , 〉
19) The contracted cannot perform actions associ-

ated with the management of products from the vir-
tual shop, that is, it cannot insert, edit or exclude pro-
ducts

〈N19,F,USA,contracted,manage(product), , 〉
20) Company 1 cannot pay for any software that

will be installed in the virtual shop
〈N20,F,USA,Company 1, pay(so f tware), , 〉

The application designer only needs to explicitly
describe in the ontology the existing relationships of
the application domain. Thus, in this case it was only
necessary to explicitly define the following relations-
hips within the domain ontology: (i) Play is declared

A Novel Tool for Detecting Indirect Normative Conflicts in Multi-agent Systems

75

between Company 1 and contractor, indicating that
Company 1 is an entity that plays the role of contrac-
tor; and (ii) Refinement is declared between the action
manage and the actions register, edit and delete.

5.2 Conflicts Detected

Conflicts are detected by combining the informa-
tion provided by the domain ontology (described by
the application designer) with the information from
WordNet database. Initially the domain-dependent
propagation occurs, considering relationships defined
in the ontology. This step will create the following
norms:

Domain dependent propagation - Propagation
between entities:

(Contractor - Company 1)

〈N1.1,F,B,Company 1,unaware(contract), , 〉
〈N2.3,O,USA,Company 1,agree(contract), , 〉
〈N3.4,F,USA,Company 1,reproduce(tool), , 〉
〈N4.5,F,USA,Company 1,commercialize(tool), , 〉
〈N5.6,F,USA,Company 1,send(email), , 〉
〈N6.7,O,USA,Company 1,purchase(software), , 〉
〈N7.8,O,USA,Company 1,deliver (product), , 〉
〈N8.9,F,USA,Company 1,access(server), , 〉
〈N11.2,O,USA,Company 1,include (freight), , 〉

After propagation and domain-dependent proces-
sing, the original norms are joined to the propagated
norms and independent domain processing is perfor-
med. By using WorNet, the mechanism detects that
one of the contexts of the domain (California) is part
of other context of the domain (USA). Then, all norms
related to USA are always related to California. This
norm propagation which will result in the following
norms:

Domain-independent propagation - Propagation
between contexts:
(USA - California)

〈N1.1,F,California,contractor,unaware(contract), , 〉
〈N10.2,P,California,contracted,change(contract), , 〉
〈N11.3,O,California,contractor,include(freight), , 〉
〈N12.4,P,California,Company 1,unaware(clause), , 〉
〈N13.5,P,California,Company 1,disagree(clause), , 〉
〈N14.6,P,California,Company 1,copy(tool), , 〉
〈N15.7,P,California,Company 1,login(computer), , 〉
〈N17.8,F,California,contracted,edit(contract), , 〉
〈N18.9,P,California,Company 1,send(spam), , 〉
〈N19.10,P,California,contracted,exclude(product), , 〉
〈N2.11,O,California,contractor,agree(contract), , 〉
〈N20.12,F,California,Company 1,pay(software), , 〉
〈N3.13,F,California,contractor,reproduce(tool), , 〉
〈N4.14,F,California,contractor,commercialize(tool), , 〉
〈N5.15,F,California,contractor,send(email), , 〉
〈N6.16,O,California,contractor,purchase(software), , 〉

Table 2: Conflicts detected in the case study presented.

Conflict Conflict Pattern Norms
(N1,
N12)

-Time inter-
section
-Same Action
-Object Part-
Whole
(clause, contract)
- F x P

(〈N1.1.20, F,California,
Company 1, unaware (contract),
, 〉,
〈N12.4, P, California,
Company 1, unaware (clause), ,
〉)

(N2,
N13)

-Time inter-
section
-Action Anto-
nymy
(agree, disagree)
-Object Part-
Whole
(clause, contract)
-O x P

(〈N2.3,O,USA,Company 1,
agree (contract), , 〉,
〈N13,P,USA,Company 1,
disagree (clause), , 〉)
(〈N2.3.22,O,California,
Company 1,agree(contract), , 〉,
〈N13.5,P,California,
Company 1,disagree
(clause), , 〉)

(N3,
N14)

-Time inter-
section
-Action Syno-
nymy
(copy, reproduce)
-Same object
-F x P

(〈N3.4,F,USA,Company 1,
reproduce(tool), , 〉,
〈N14,P,USA,Company 1,
copy (tool), , 〉)
(〈N3.4.23,F,California,
Company 1,reproduce (tool), , 〉,
〈N14.6,P,California,
Company 1,copy(tool), , 〉)

(N5,
N18)

-Time inter-
section
-Same action
-Object Speciali-
zation
(spam, email)
-F x P

(〈N5.6,F,USA,Company 1,
send(email), , 〉,
〈N18,P,USA,Company 1,
send(spam), , 〉)
(〈N5.6.25,F,California,
Company 1,send(email), , 〉,
〈N18.9,P,California,
Company 1,send(spam), , 〉)

(N6,
N20)

-Time inter-
section
-Action Entail-
ment
(purchase, pay)
-Same object
-O x F

(〈N6.7,O,USA,Company 1,
purchase(software), , 〉,
〈N20,F,USA,Company 1,
pay(software), , 〉)
(〈N6.7.26,O,California,
Company 1,purchase (soft-
ware), , 〉,
〈N20.12,F,California,
Company 1,pay (software) , 〉)

(N9,
N19)

-Time inter-
section
-Action Refine-
ment
(exclude, ma-
nage)
-Same object
-F x P

(〈N9,F,USA,contracted,
manage(product), , 〉,
〈N19,P,USA,contracted,
exclude(product), , 〉)

(N11,
N16)

-Time inter-
section
-Action Anto-
nymy
(exclude, include)
-Same object
-O x P

(〈N11.2.21,O,California,
Company 1,include (freight), , 〉,
〈N16,P,California,
Company 1,exclude(freight),
01/12/2016 00:00:00, 12/31/2016
00:00:00〉)

〈N7.17,O,California,contractor,deliver(product), , 〉
〈N8.18,F,California,contractor,access(server), , 〉
〈N9.19,F,California,contracted,manage(product), , 〉
〈N1.1.20,F,California,Company 1,unaware(contract), , 〉
〈N11.2.21,O,California,Company 1,include(freight), , 〉
〈N2.3.22,O,California,Company 1,agree(contract), , 〉
〈N3.4.23,F,California,Company 1,reproduce(tool), , 〉
〈N4.5.24,F,California,Company 1,commercialize(tool), , 〉
〈N5.6.25,F,California,Company 1,send(email), , 〉

ICAART 2018 - 10th International Conference on Agents and Artificial Intelligence

76

〈N6.7.26,O,California,Company 1,purchase(software), , 〉
〈N7.8.27,O,California,Company 1,deliver(product), , 〉
〈N8.9.28,F,California,Company 1,access(server), , 〉

Note that norms whose id is a triple numbering
(for instance, N5.6.25) are norms that were propa-
gated two times (domain-dependent propagation and
domain-independent propagation).

After the complete analysis, a total of 7 normative
conflicts were detected. It is important to emphasize
that conflicts can only occur between the norms that
are addressed to the same entities and contexts. Such
conflicts are listed in Table 2.

Note that the detection mechanism of our tool
combines two approaches, then, the conflict between
norms N9 and N19 was detected based on a domain
dependent relationship (relationship Refinement bet-
ween actions). The remaining conflicts were detected
based on WordNet relationships involving actions and
objects (Synonymy, Antonymy, Entailment, Speciali-
zation, Part-Whole), and based on the relationship
Play specified on the domain ontology that determi-
nes that Company 1 plays the role of contractor.

6 CONCLUSIONS

The detection of conflicts among norms of a MAS is
a very important topic that has been studied in MAS.
When a system is governed by a large and/or com-
plex set of norms, a process of verification/revision
of norms is needed to avoid the occurrence of norma-
tive conflicts. However, it is difficult for a human to
detect all normative conflicts that may arise in a big
set of norms, besides being a task that demands a lot
of time and that is prone to errors. In this context,
our research aims to automate the conflict detection
process, providing a mechanism able to detect direct
and indirect normative conflicts. Our research provi-
des means to detect indirect normative conflicts that
do not depend on the domain of the application, that
is, it is able to detect conflicts even when the system
designer does not previously specify the relationships
among the elements of the norms, performing a se-
mantic mapping. In addition, we consider cases of
conflicts that may occur due to relationships that have
not yet been considered in any proposal of other aut-
hors, such as: synonyms and antonyms. However, we
know that a MAS can be designed to meet the needs of
a more specific universe, and therefore we cannot just
consider relationships that exist in the real world in
our analysis. For this reason, we have combined our
approach with the research presented in (Zahn, 2015)
and have developed a robust mechanism that can also

analyze relationships previously defined in a domain
ontology. In short, our proposal to detect normative
conflicts was divided into three steps, as follows:

(i) the first step consists in creating a mechanism
that maps the elements that compose the norms
to words and after that, search for relationships
between words. In this step, several cases of
normative conflicts were defined that can be in-
ferred using WordNet as source of information.
This step is responsible for detecting domain-
independent conflicts;

(ii) the second step extends the approach presented
in (Zahn, 2015) so that it can be integrated with
the mechanism created in the first step in order to
detect domain-dependent conflicts;

(iii) the third step consists of integrating the first and
second steps and creating a tool for checking in-
direct conflicts involving relationships that de-
pend or not of the domain.

6.1 Limitations

Among the limitations of our research we can high-
light:

(i) the norms of the MAS must be described in an
OWL ontology following a specific format. We
consider this a limitation of our approach be-
cause if the system designer has a set of norms
described in natural language he will need to con-
vert this set of norms to the specific format defi-
ned in the ontology;

(ii) domain-dependent relationships also need to be
described in an ontology and follow the format
detailed in (Zahn, 2015);

(iii) the developed tool is not able to distinguish
words that are homonymous, that is, words
whose spelling is the same, but have different
meanings when inserted in different contexts.
For example, the word doctor may refer to a per-
son graduated in medicine (medical context) or a
person who holds a doctorate degree (academic
context). This problem is known as Lexical Di-
sambiguation of Meaning (LDM) or Word Sense
Disambiguation (WSD) in Artificial Intelligence
(AI) (Ide and Véronis, 1998). Although it is pos-
sible to analyze all the elements of a norm to try
to infer the meaning of a word in a given context,
this step is very costly and is not a guarantee of
certainty. In practice, such ambiguities are unli-
kely to occur during conflict detection because,
in general, norms are related to the same domain
or related ones. In addition, WordNet can store a

A Novel Tool for Detecting Indirect Normative Conflicts in Multi-agent Systems

77

word in different synsets that have a small diffe-
rence of meaning, which may make the process
of disambiguation unnecessary in many cases.
An example of this is the verb kill that belongs
to different synsets whose meanings are very si-
milar, as listed in Table 3.

Table 3: Meanings of the verb kill in WordNet.

(v
er

b)
ki

ll Gloss Example

causing death in-
tentionally

“This man killed several
people when he tried to
rob a bank”

be fatal “cigarettes kill”

deprive of life “AIDS has killed thou-
sands in Africa”

causing death un-
intentionally

“She was killed in the
collision of three cars”

Despite these limitations, we consider that our re-
search provided a great contribution to the area of de-
tection of normative conflicts because it has resulted
in the creation of a tool that can help a software engi-
neer to design/include norms in a MAS in a consistent
way and mainly because it is possible to use such a
tool to detect normative conflicts in MAS that do not
have previously specified domain relationships. Thus,
the software engineer/system designer only needs to
specify in a domain ontology relationships that do not
occur in the real world.

6.2 Future Work

As suggestions for future work, we point out the fol-
lowing extensions for this research:
(i) to define cases of domain-independent conflicts

between norms that regulate states. This can be
implemented by using the majority of relations-
hips between defined actions, but by referring to
another grammar class. To search for relations-
hips between actions we map actions to verbs
and to search for relationships between states we
could map states to adjectives;

(ii) to implement the lexical disambiguation process.
This process should consider the grammatical
class of the word and perform an analysis in-
volving all the elements that compose the norm
(context, entity, action, object). The disambi-
guation process can also investigate the seman-
tic similarity between two words, that is, can use
metrics to calculate numerical values that deter-
mine the proximity between a word and a con-
cept that contains a certain word. Other informa-
tion that may be useful for lexical disambiguation
are the words contained in the description (called

“gloss”) of each WordNet synset. In addition, if
the WordNet synset is associated with sentences
that exemplify the use of its words, such senten-
ces can also be used. However, since most ex-
isting LDM methods require high computational
complexity, many approaches adopt heuristics of
disambiguation, such as (Mihalcea, 2006):

a. the most common sense: words are disambi-
guated according to the most common sense of
the language. In this case, the algorithm should
select the first synset that contains the word to
be disambiguated (because the WordNet sorts the
synsets according to their frequency of use);

b. a sense by discourse: after determining the me-
aning of a word p, all other occurrences of that
word will be attributed to the same meaning;

(iii) to receive as input of the algorithm norms in na-
tural language. In this case, it is necessary to de-
velop a mechanism for preprocessing a text file
that contain the norms in order to map them to the
norm definition presented in Section 3.1. Note
that when the norms are described in natural lan-
guage the modality of the norm (prohibition, per-
mission, obligation) may not be explicitly descri-
bed. To identify the modality of the norm, the
method can verify, for instance, if the norm has
some of the modal verbs, as follows:

a. verbs that denote obligations: must, need,
ought, have to, will;

b. verbs that denote permissions: can, may, could;
c. verbs that denote prohibitions (usually verbs de-

noting permissions and obligations accompanied
by a term denoting denial): cannot, should not,
must not, do not have.

REFERENCES

Aphale, M., Norman, T. J., and Şensoy, M., 2013. Goal-
directed policy conflict detection and prioritisation.
In Aldewereld, H., Sichman, J.S., (Eds), Coordina-
tion, organisations, institutions and norms in agent sy-
stems VIII, volume 7756 of Lecture notes in computer
science (pp. 87104). Springer.

Şensoy, M., Norman, T. J., Vasconcelos, W. W., and Sycara,
K., 2012. OWL-POLAR: A framework for semantic
policy representation and reasoning. Web Semantics:
Science, Services and Agents on the World Wide Web,
1213, 148160.

Fenech, S., Pace, G. J., and Schneider, G., 2008. Detection
of conflicts in electronic contracts. NWPT 2008, 34.

Gaertner, D., Garcia-Camino, A., Noriega, P., Rodriguez-
Aguilar, J. A., and Vasconcelos, W. W., 2007. Distri-
buted norm management in regulated multiagent sy-
stems. In Proceedings of the 6th international joint

ICAART 2018 - 10th International Conference on Agents and Artificial Intelligence

78

conference on autonomous agents and multiagent sy-
stems, AAMAS 07 (pp. 90:190:8). New York, NY:
ACM.

Giannikis, G. K. and Daskalopulu, A., 2011. Normative
conflicts in electronic contracts. Electronic Commerce
Research and Applications, 10(2), 247267.

Horridge M. and Bechhofer S., 2011. The OWL api: A java
api for owl ontologies. Semantic Web, v. 2, n. 1, p.
11-21.

Ide, N. and Véronis, J., 1998. Introduction to the special
issue on word sense disambiguation: the state of the
art. Computational linguistics, v. 24, n. 1, p. 2-40.

Kollingbaum, M. J., Norman, T. J., Preece, A., and
Sleeman, D., 2007. Norm conflicts and inconsisten-
cies in virtual organisations. In P. Noriega, J. Vázquez-
Salceda, G. Boella, O. Boissier, V. Dignum, N. For-
nara, & E. Matson (Eds.), Coordination, organizati-
ons, institutions, and norms in agent systems II, vo-
lume 4386 of Lecture notes in computer science (pp.
245258). Berlin: Springer.

Mihalcea, R., 2006. Knowledge-based methods for WSD.
Word Sense Disambiguation: Algorithms and Appli-
cations, pp. 107-131.

Miller, G. A., 1995. WordNet: a lexical database for Eng-
lish, Communications of the ACM, 38(11), 3941.

Neto, B. F. S., Silva, V. T., and Lucena, C. J. P., 2012. An
architectural model for autonomous normative agents.
In L. Barros, M. Finger, A. Pozo, G. Gimenénez-
Lugo, & M. Castilho (Eds.), Advances in artificial
intelligenceSBIA 2012, Lecture notes in computer
science (pp. 152161). Berlin: Springer.

Neto, B. F. S., Silva, V. T., and Lucena, C. J. P., 2013. De-
veloping goal-oriented normative agents: The NBDI
architecture. In J. Filipe, & A. Fred (Eds.), Agents and
artificial intelligence, volume 271 of Communications
in computer and information science (pp. 176191).
Berlin: Springer.

Santos, J. S., and Silva, V. T., 2016. Identifying Domain-
Independent Normative Indirect Conflicts. In: 2016
IEEE 28th International Conference on Tools with Ar-
tificial Intelligence (ICTAI), 2016, San Jose. p. 536.

Santos, J. S., Zahn, J. O., Silvestre, E. A., Silva, V. T.,
and Vasconcelos, W. W., 2017. Detection and reso-
lution of normative conflicts in multi-agent systems:
a literature survey. Autonomous Agents and Multi-
Agent Systems, pp. 1-47. DOI: [ONLINE] DOI:
10.1007/S10458-017-9362-Z.

Vasconcelos, W. W., Kollingbaum, M. J., and Norman,T. J.,
2009. Normative conflict resolution in multiagent sys-
tems. Autonomous Agents and Multi-Agent Systems,
19(2), 124152.

Vasconcelos, W. W., Garcı́a-Camino, A., Gaertner, D.,
Rodrı́guez-Aguilar, J. A., and Noriega, P., 2012. Dis-
tributed norm management for multi-agent systems.
Expert Systems with Applications, 39(5), 5990 5999.

Walenz, B. and Didion, J., 2011. “JWNL: Java WordNet li-
brary.” 2008-05-14]. http://jwordnet. sourceforge, net.

Zahn, J. O., 2015. Um Mecanismo de Verificação de Con-
flitos Normativos Indiretos. Masters thesis, Instituto

de Computação - Universidade Federal Fluminense
(IC/UFF), Niterói, Brasil.

A Novel Tool for Detecting Indirect Normative Conflicts in Multi-agent Systems

79

